Name

Reg. No....

SIXTH SEMESTER UG (CBCSS-UG) DEGREE EXAMINATION, MARCH 2024

Mathematics

MTS 6B 10—REAL ANALYSIS

(2019 Admissions onwards)

ime: Two Hours and a Half

Maximum Marks: 80

Section A

Questions 1—15. Answer any number of questions. Each carry 2 marks. Maximum marks 20.

- 1. State discontinuity criterion. Hence show that the signum function is not continuous at x = 0.
- 2. State maximum-minimum theroem.
- 3. Show that $f(x) = \frac{1}{x}$ is uniformly continuous on $[a, \infty)$ where a > 0.
- 4. Define Riemann integral of a function f on an integral [a, b].
- 5. If f and g are in R[a, b] and if $f(x) \le g(x)$ for all x in [a, b] then show that $\int_a^b f \le \int_a^b g$.
- 6. State Lebesgue's integrability criterion.
- 7. If f and g belong to R[a, b] then the product fg belongs to R[a, b].
- 8. Show that $\lim \frac{\sin(nx+n)}{n} = 0$ for $x \in \mathbb{R}$.
- 9. Discuss the uniform convergence of $f_n(x) = \frac{x}{n}$ on A = [0, 1].
- 10. Evaluate $\lim (e^{-nx})$ for $x \in \mathbb{R}$, $x \ge 0$.
- 11. Define absolute convergence of series of functions.
- 12. Evaluate $\int_{-\infty}^{0} e^x dx$.
- 13. Find the principal value of $\int_{-\infty}^{\infty} \frac{dx}{x^2 + 1}$.

Turn over

- 14. Show that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$.
- 15. Define Beta fucntion. St B (p, q) = B(q, p).

Section B

Questions 16-23. Answer any number of questions. Each carry 5 marks. Maximum marks 35.

- 16. Let $A = \{x \in \mathbb{R} \mid x > 0\}$. Define h on A by h(x) = 0 if $x \in A$ is irrational and $h(x) = \frac{1}{n}$ if $x \in A$ rational with $x = \frac{m}{n}$, $m, n \in \mathbb{N}$ have no common factor except 1. Then show is continuous at every irrational number in A and discontinuous at every rational n
- 17. Let I be an interval and $f: I \to \mathbb{R}$ be a continuous function on I then show that fI
- 18. If $f \in \mathbb{R}$ [a, b] then show that f is bounded on [a, b].
- Show that if $\phi:[a,b]\to\mathbb{R}$ is a step function then $\phi\in\mathbb{R}[a,b]$.
- 20. Evaluate $\lim \frac{x^2 + nx}{n}$, $x \in \mathbb{R}$. Is the convergence uniform on \mathbb{R} ?
- 21. Let (f_n) be a sequence of bounded functions on $A \subseteq \mathbb{R}$. Then show that (f_n) com uniformly on A to a bounded function f iff for each $\varepsilon > 0$ there is a number $H(\varepsilon)$ in that for all $m, n \ge H(\varepsilon)$ then $\|f_m - f_n\|_{A} \le \varepsilon$.
- Discuss the convergence of $\int_{0}^{\infty} \frac{\sin^2 x}{x^2} dx$,
- 23. Define Beta function and show that $\forall p > 0, q > 0$, $B(p,q) = 2 \int_{0}^{\pi/2} \sin^{2p-1}\theta \cos^{2p-1}\theta d\theta$.

Section C

Questions 24-27. Answer any two questions. Each carry 10 marks.

- 24. (a) Show that if f and g are uniformly continuous on $A\subseteq \mathbb{R}$ and they are bounded then their product fg is also uniformly continuous.
 - (b) Show that $f(x) = \sqrt{x}$ is uniformly continuous on $[a, \infty)$ where a > 0.

472213

D 100611

- Suppose f and g are in R [a, b]. Then
 - if $k \in \mathbb{R}$, show that $kf \in \mathcal{R}[a,b]$ and $\int_a^b kf = k \int_a^b f$.
 - (b) $f+g \in \mathcal{R}[a,b]$ and $\int_a^b f+g = \int_a^b f + \int_a^b g$.
- Discuss the pointwise and uniform convergence of:
 - (a) $f_n(x) = \frac{\sin(nx+n)}{n}$ for $x \in \mathbb{R}$.
 - (b) $g_n(x) = \frac{x^2 + nx}{n}$ for $x \in \mathbb{R}$.
- 27. Show that $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}.$

 $(2 \times 10 = 20 \text{ marks})$