C 40604

(Pages: 3)

Name.....

Reg. No....

SIXTH SEMESTER U.G. DEGREE EXAMINATION, MARCH 2023

(CBCSS-UG)

Mathematics

MTS 6B 11—COMPLEX ANALYSIS

(2020 Admission onwards)

Time: Two Hours and a Half

Maximum: 80 Marks

Section A

Answer any number of questions. Each question carries 2 marks. Maximum 25 Marks.

- 1. Define entire function. Give an example.
- 2. State a necessary condition for analyticity.
- 3. Prove that $u(x, y) = e^{-x} \sin y$ is harmonic.
- 4. Prove that $\overline{e^z} = e^{\overline{z}}$.
- 5. Find all values of z satisfying the equation $e^{z-1} = -ie^3$.
- 6. Find the real and imaginary parts of $\sin(\overline{z})$.
- 7. Evaluate $\oint_C xydx + x^2 dy$ where C is the curve $y = x^3$, $-1 \le x \le 2$.
- 8. Define simply and multiply connected domains. Give examples for each.
- 9. State Cauchy's Goursat theorem and find $\oint_C e^z dz$ on a simple closed contour C.
- 10. Evaluate the integral $\int_{\frac{i}{2}}^{i} e^{\pi z} dz$ and write it in the form a + ib.

Turn over

- 11. By using Cauchy's integral formula evaluate $\int_C \frac{z}{z^2+9} dz$ where C is the circle |z-2i|=4.
- State root test. 12.
- 13. Find the Taylor expansion of $f(z) = \frac{1}{1-z}$.
- 14. Find the Laurent's series expansion of $f(z) = \frac{\cos z}{z}$ in 0 < |z|.
- 15. Find the pole of $\frac{\sin z}{z^2}$.

Section B

Answer any number of questions. Each question carries 5 marks. Maximum 35 Marks.

- 16. Prove that if f is differentiable at a point z_0 in a domain D then f is continuous at z_0
- Find the real constants a, b, c and d so that f(z) = (3x y + 5) + i(ax + by 3) is analytic.
- Compute the principal value of the complex logarithm Ln z for z = i and z = 1 + i.
- Find the derivative of the principal value of z^i at the point z = 1 + i.
- 20. Find the upper bound of the absolute value of $\oint_C \frac{e^z}{z+1} dz$ where C is the circle |z| = 4.
- 21. Evaluate $\oint_C \frac{1}{\sqrt{z}} dz$ where C is the line segment between $z_0 = i$ and $z_1 = 9$.

22. Examine the covergence of the following series on their circle of convergence (a) $\sum_{0}^{\infty} z^{n}$; and

(b)
$$\sum_{0}^{\infty} \frac{z^{n}}{n^{2}}.$$

23. Expand $f(z) = \frac{1}{z(z-1)}$ in a Laurent series valid for |z| > 1.

Section C

Answer any **two** questions. Each question carries 10 marks. Maximum 20 Marks

24. (a) State and prove Cauchy's integral formula.

(b) Evaluate
$$\int_{C} \frac{z}{z^2 + 9} dz$$
 where C is the circle $|z - 2i| = 4$.

25. Evaluate
$$\int_{C} \frac{dz}{z^2 + 1}$$
.

- 26. (a) State and prove Cauchy's inequality.
 - (b) State Maximum modulus theorem and find the maximum modulus of f(z) = 2z + 5i on the closed circular region $|z| \le 2$.
- 27. State and prove Cauchy's residue theorem and using it evaluate $\int_{C} \frac{dz}{z^3(z-1)}$ where C is |z|=2.