532	20	nα
บอ.	20	UЭ

D 110234	(Pages : 2)	Name	
		Reg. No	

FIFTH SEMESTER (CBCSS—UG) DEGREE EXAMINATION **NOVEMBER 2024**

Physics/Applied Physics

PHY 5B 06/APH 5B 06—COMPUTATIONAL PHYSICS

(2019 Admission onwards)

Maximum: 60 Marks Time: Two Hours

The symbols used in this question paper have their usual meanings.

Section A (Short Answer Type)

Answer all questions in two or three sentences. Each correct answer carries a maximum 2 marks.

- 1. What is an algorithm? Write an algorithm to read two numbers and print their sum.
- What are the different data types in python?
- 3. How to add comments in python. What is the importance of comments in programming?
- What is a tuple'? How is it different from 'list'.
- Write down Newton-Raphson formula.
- 6. What is the significance of computers in numerical simulations?
- 7. Write down the output of the following:
 - (a) 3.4//3.
 - (b) 3.4 % 3.
- How do you create a two dimensional array using Numpy? Give an example.
- Write the output of the following commands
 - (a) print("hello", "world", sep="---").
 - (b) x=2; x+=2; print(x).
- 10. Write a program, using a function to read a velocity in kilometers per hour and print it in meters per second.

Turn over

11. Write a program to create a one dimensional array of numbers from 0 to 9 using $num_{p_{\hat{y}}}$

11. Write a program to create M_{atple} write a program to create M_{atple} write down the commands for labeling axes and choosing line styles in plots using M_{atple}

12. Write down the commands for labeling axes and every (Ceil

Section B (Paragraph / Problem Type)

(Answer all questions in a paragraph of about half a page to one page, each correct answer of maximum of 5 marks).

13. Write a program to draw the position time graph for a freely falling object.

14. Find the real root of the equation $x^3 - x - 11 = 0$ by using the bisection method.

15. Apply Runge Kutta method to find an approximate value of y(0.2) = 0, given y' = x y(0) = 1.

16. Write a python program to read two 3 x 3 matrices and print the matrix product of then program using Numpy for the same.

17. Write a program to solve $y' = \cos(x)$, given y(0) = 0. Add code to plot the solution.

18. Evaluate $I = \int_{0}^{6} \frac{1}{1+x} dx$ using Simpson's rule.

Write a program to graphically simulate the radioactive decay of an element where initial and half life is given.

Section C (Essay Type)

Essays - Answer in about **two pages**, any one question.

The question carries 10 marks.

20. Explain Newton's interpolation formula. The population of a town in the census is as a Estimate the population for the year 1965 using Newton's forward interpolation for the second content of th

Year		100.		- B CONG	on's forwa	ard interpolation form	
Population		1961	1971	1981	1991	2001	1
	;	46	66	81	93	101	1

21. Given $\frac{dy}{dx} = x^2 - y$, y(0) = 1, find y(0.1) correct to 3 decimal places using Euler method. Write programs for both the methods

(1×10°273

(Ce