(Pages: 3)

Name.....

Reg. No.....

FIFTH SEMESTER (CBCSS—UG) DEGREE EXAMINATION NOVEMBER 2023

Mathematics

MTS 5B 07—NUMERICAL ANALYSIS

(2020 Admission onwards)

Time: Two Hours

Maximum: 60 Marks

Section A

Answer any number of questions.

Each question carries 2 marks.

Ceiling is 20.

- 1. State the formula for Newton's method.
- 2. Find all fixed points of the function $f(x) = \frac{x^3 1}{x^2 + 1}$.
- 3. What is an algebraic polynomial? Give an example.
- 4. State Fixed Point Theorem.
- 5. State one advantage of Secant method over Newton's method.
- 6. Write Newton's backward difference formula.
- 7. Write the Simpson's rule for $\int_0^2 x^2 dx$.
- 8. Write the formula for the method of false position
- 9. Does the set $\{(t, y), -1 < t < 2, 0 < y < 1\}$ is a convex set? Justify your answer.
- 10. What is Lipschitz constant?
- 11. What is a well posed problem?
- 12. What is the 'Degree of Accuracy' of a quadrature formula?

Turn over

Section B

Answer any number of questions. Each question carries 5 marks. Ceiling is 30.

- Find the positive root of $x = \cos x$ using Newton's method.
- Use Newton's forward difference formula to find a polynomial of degree four which values:

	f(x)
x	1 (3)
2	0
4	0
6	1
8	0
10	0

Using Lagrange's formula of interpolation find f (9.5) given :

	12 m
x	f(x)
7	3
8	1
9	1
10	9

16. Approximate the integral $\int_0^6 \frac{1}{1+x^2}$ using Simpson's rule.

17. Consider the following table of data:

x	f(x)
50	3.6840
51	3.7084
52	3.7325
53	3.7563
54	3.7798
55	3.8030
. 56	3.8259

Use backward difference formula to approximate the value of f'(56).

- Use Euler's method to approximate the solution for y' = t + y, y(0) = 1, h = 0.2.
- 19. Apply Taylor's method of order two to approximate the solution for the initial value problem $y' = y - t^2 + 1, 0 \le t \le 2, y(0) = 0.5.$

Section C

Answer any one question. The question carries 10 marks.

- Show that the Mid point method and Modified Euler method give the same approximations to the initial value problem y' = -y + t + 1, $0 \le t \le 1$, y(0) = 1 for any choice of h. Why is this true?
- Find the positive root of $x^3 9x + 1 = 0$ by Bisection method within 10^{-4} accuracy.

 $(1 \times 10 = 10 \text{ marks})$