D	1	0	6	6	9
	-		٠,	`,	•,

(Pages : 4)

Name.....

Reg. No.....

FIFTH SEMESTER U.G. DEGREE EXAMINATION, NOVEMBER 2021

(CBCSS-UG)

Mathematics

MTS 5B 08-LINEAR PROGRAMMING

(2019 Admissions)

Time : Two Hours

Maximum: 60 Marks

Section A

Answer at least **eight** questions. Each question carries 3 marks. All questions can be attended. Overall Ceiling 24.

- 1. Define canonical minimization linear programming problem.
- 2. Give an example of a bounded polyhedral convex subset in \mathbb{R}^2 .
- 3. State the canonical minimization linear programming problem represented by the following tableau:

- 4. Define unbounded linear programming problem.
- 5. Pivot on 5 in the canonical maximum tableau given below:

x_1	x_2	-1	
1	2	3	$=-t_{1}$
4	5	6	$=-t_2$
7	8	9	=f

- 6. Write the simplex algorithm for maximum tableaus.
- 7. What do you mean by complementary slackness?
- State Duality theorem.

Turn over

3

D 10669

15. Solve the canonical linear programming problem using simplex algorithm:

16. Solve the non-canonical linear programming problem given below

Maximize f(x, y, z) = 2x + y - 2z subject to

$$x + y + z \le 1$$
$$y + 4z = 2$$
$$x, y, z \ge 0.$$

- 17. Write the dual simplex algorithm for minimum tableaus.
- 18. Solve the transportation problem given below:

19. Apply Northwest-corner method to obtain the initial basic feasible solution of the transportation problem given below:

7	2	4	10
10	5	9	20
7	3	5	30
20	10	30	

 $(5 \times 5 = 25 \text{ marks})$

Section C

Answer any one question.
The question carries 11 marks.

20. Solve the canonical linear programming problem given below using the simplex algorithm.

x	У	z	-1	
1	2	1	4	$=-t_{1}$
2	1	5	5	$=-t_{2}$
3	2	0	6	$=-t_{3}$
1	2	3	0	=f
			ŭ	,

Turn over

4

21. Write the Hungarian algorithm. Using this algorithm solve the following assignment prob

2	3	2	4
2 5 5	8	4	3
5	9	5	2
7	6	7	4

 $(1 \times 11 = 11_1)$