D 110215

(Pages: 4)

Name.....

Reg. No.....

FIFTH SEMESTER (CBCSS-UG) DEGREE EXAMINATION, NOVEMBER 2024

Mathematics

MTS 5D 03—LINEAR MATHEMATICAL MODELS

(2020 Admission onwards)

Time: Two Hours

Maximum: 60 Marks

Section A

Short answer type. All questions can be answered. Each question carries 2 marks. (Ceiling 20).

- 1. Find the equation of the line through (0, -3) and having slope $\frac{3}{4}$.
- 2. Find k such that the line through (4, -1) and (k, 2) is perpendicular to 5x 2y = -1.
- 3. Solve the following system of equations:

$$3x + 10y = 115$$

$$11x + 4y = 95$$

4. Let
$$B = \begin{bmatrix} 2 & 3 & -2 \\ 2 & 4 & 0 \\ 0 & 1 & 2 \end{bmatrix}$$
 and $D = \begin{bmatrix} 6 \\ 1 \\ 0 \end{bmatrix}$. Find BD.

- 5. Find the values of the variables in the equation $\begin{bmatrix} s-4 & t+2 \\ -5 & 7 \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ -5 & r \end{bmatrix}.$
- 6. Graph the linear inequality $2x-3y \le 12$
- 7. Graph the feasible region for the following system of inequalities and tell whether the region is bounded or unbounded:

$$x + y \le 1$$

$$x-y \ge 2$$

Turn over

- Identify all variables used and express the statement given below as linear inequalities.
 Wong spends 3 hours selling a small computer and 5 hours selling a larger model. She more than 45 hours per week.
- 9. Restate the following linear programming problem by introducing slack variables.

Maximize
$$z = 3x_1 = 2x_2 + x_3$$

subject to
$$\begin{aligned} z &= 3x_1 = 2x_2 + x_3 \\ 2x_1 + x_2 + x_3 &\leq 150 \\ 2x_1 + 2x_2 + 8x_3 &\leq 200 \\ 2x_1 + 3x_2 + x_3 &\leq 320 \\ \text{with } x_1 &\geq 0, x_2 \geq 0, x_3 \geq 0. \end{aligned}$$

10. Write the solution that can be read from the following simplex tableau:

- 11. What is a standard minimum form of a linear programming problem?
- 12. Write the dual of the following linear programming problem:

Maximize
$$z = 2x_1 + 5x_2$$

subject to
$$x_1+x_2\leq 10$$

$$2x_1+x_2\leq 8$$
 with $x_1\geq 0, x_2\geq 0$

ij

1

3

D 110215

Section B

Paragraph / Problem type. All questions can be answered. Each question carries 5 marks. (Ceiling 30).

- 13. Producing x units of tacos costs C(x) = 5x + 20, revenue is R(x) = 15x where C(x) and R(x) are in dollars.
 - a) What is the break-even quantity?
 - b) What is the profit from 100 units?
 - c) How many units will produce a profit of \$500?
- 14. Using Gauss-Jordan method to solve:

$$2x - 2y = -5$$
$$2y + z = 0$$
$$2x + z = -7$$

- 15. Find the inverse of $A = \begin{bmatrix} 2 & -5 & 7 \\ 4 & -3 & 2 \\ 15 & 2 & 6 \end{bmatrix}$.
- 16. Explain briefly solving a linear programming problem by the graphical method.
- 17. A 4-H member raises only goats and pigs. She wants to raise no more than 16 animals, including no more than 10 goats. She spends \$25 to raise a goat and \$75 to raise a pig, and she has \$900 available for this project. Each goat produces \$12 in profit and each pig \$40 in profit. How many goats and how many pigs should she raise to maximize total profit?
- 18. Using simplex method solve the linear programming problem whose initial tableau is given below.

x_1	x_2	x_3	s_1	s_2	s_3	z	
2	1	2	1	0	0	0	25
4	3	2	0	1	0	0	40
3	1	6	0	0	1	0	60
-4	-2	-3	0	0	0	1	0

19. Explain how to solve non-standard problems.

(Ceiling 30)

Turn over

Section C

Essay type

Answer any **one** of the following questions. The question carries 10 marks.

20. Solve the following system of equations by using inverse of the co-efficient matrix:

$$x-2y+3z = 4$$

 $y-z+w = -8$
 $-2x+2y-2z+4w = 12$
 $2y-3z+w = -4$

21. Solve using artificial variables:

maximize
$$z = 3x_1 + 2x_2$$

subject to
$$x_1 + x_2 = 50$$

 $4x_1 + 2x_2 \ge 120$
 $5x_1 + 2x_2 \le 200$
with $x_1 \ge 0, x_2 \ge 0$

 $(1 \times$