(Pages: 3)

Name.....

Reg. No.....

FIFTH SEMESTER (CBCSS—UG) DEGREE EXAMINATION NOVEMBER 2022

Mathematics

MTS 5B 05—THEORY OF EQUATIONS AND ABSTRACT ALGEBRA

(2019 Admissions only)

Time: Two Hours and a Half

Maximum: 80 Marks

Section A

Answer any number of questions. Each question carries 2 marks. Ceiling is 25.

- 1. Find the quotient and remainder when $-x^4 + 7x^3 4x^2$ is divided by x-3.
- 2. Write a cubic equation with roots 1, 1+i, 1-i.
- 3. Factorise into real linear and quadratic factors: $x^4 + x^3 + x^2 + x + 1$.
- 4. State Rolles Theorem.
- 5. Verify whether the equation $x^3 3x^2 4x + 13 = 0$ has roots in the interval (-3, -2).
- 6. Define Euler's function. Find the value of ϕ (36).
- 7. Find the multiplicative inverse of (14) in \mathbb{Z}_{15} .
- 8. Prove that if p is a prime $(p-1)! \equiv -1 \pmod{p}$.
- 9. Check whether the relation \sim on R defined by $a \sim b$ if $|a b| \le 1$ is an equivalence relation.
- 10. Let σ , $\tau \in S_7$ be given by $\sigma = (1356)$ and $\tau = (12)(3547)$. Find $\sigma \tau \sigma^{-1}$.
- 11. Find the order of $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 8 & 4 & 9 & 6 & 5 & 2 & 3 & 1 & 7 \end{pmatrix}$.

Turn over

245472

- 12. Let G be a group. Prove that if $x^2 = e$ for all $x \in G$ then G is abelian,
- Write the subgroups of S₃.
- 14. Let G be a group with $a, b \in G$ then show that $O(aba^{-1}) = O(b)$.
- 15. Let $G = \mathbb{Z}_{12}$ and $H = 4 \mathbb{Z}_{12}$. Find all cosets of H.

Section B

Answer any number of questions. Each question carries 5 marks. Ceiling is 35.

- 16. Solve the biquadratic equation $x^4 7x^3 + 18x^2 22x + 12 = 0$ whose roots are a, b, c and d and d and d and d and d are d are d are d are d are d are d and d are d are d are d are d and d are d and d are d and d are d are
- 17. Find the limits of roots of the equation $2x^5 8x^4 11x^3 + 5x^2 + 2x 11 = 0$.
- 18. Separate the roots of the equation $3x^4 2x^3 6x^2 + 6x 2 = 0$.
- 19. Let G be a group and $a, b \in G$. Prove that $(ab)^n = a^n b^n$ for all $n \in \mathbb{Z}$ iff ab = ba.
- Find all cyclic subgroups of Z₈.
- 21. Check whether the set $\{a+b\sqrt[3]{2} \mid a,b\in\mathbb{Q}\}$ are subring of the field of real numbers.
- 22. Show that the cyclic group $\langle i \rangle$ is isomorphic to \mathbb{Z}_4 .
- 23. Let $\varphi: G \to H$ is an isomorphism of groups. Then show that :
 - a) If G is abelian then so is H; and
 - b) If G is cyclic then so is H.

3

D 30559

Section C

Answer any **two** questions. Each question carries 10 marks. Maximum marks 20.

- 24. Solve the cubic equation : $2x^3 + 3x^2 + 3x + 1 = 0$.
- 25. Let G be a group with normal subgroups H and K such that HK = G and $H \cap K = \{e\}$ then show that $G = H \times K$.
- 26. Let G be a cyclic group. Then show that :
 - a) If G is infinite then $G \cong \mathbb{Z}$.
 - b) If G is finite with |G| = n, then $G \cong \mathbb{Z}_n$.
- 27. State and prove Fundamental Homomorphism theorem.

 $(2 \times 10 = 20 \text{ marks})$