1	3	-	~	-
	.,		Э.	ា

(Pages: 4)

Nama			
ramen	************	********	 •

Reg. No.....

FOURTH SEMESTER (CBCSS—UG) DEGREE EXAMINATION APRIL 2021

Mathematics

MTS 4B 04—LINEAR ALGEBRA

ime: Two Hours and a Half

Maximum: 80 Marks

Section A (Short Answer Type Questions)

Answer at least ten questions.

Each question carries 3 marks.

All questions can be attended.

Overall Ceiling 30.

- 1. Describe different possibilities for solution (x, y) of a system linear equations in the xy plane. What are consistent system?
- 2. Suppose that the augmented matrix for a linear system has been reduced to the row echelon form

as
$$\begin{bmatrix} 1 & -3 & 4 & 7 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 1 & 5 \end{bmatrix}$$
 solve the system.

- 3. Define trace of a square matric. Find the trace of the matrix $A = \begin{bmatrix} -1 & 2 & 7 & 0 \\ 3 & 5 & -8 & 4 \\ 1 & 2 & 7 & -3 \\ 4 & -2 & 1 & 0 \end{bmatrix}$
- 4. Show that the standard unit vectors

$$e_1 = (1, 0, 0), e_2 = (0, 1, 0.... 0), e_3 = (0, 0, 1, 0.... 0).....e_n = (0, 0, 1) \operatorname{span} \mathbb{R}^n$$

- 5. Find the co-ordinate vector of w = (1,0) relative to the basis $s = [\overline{u}_1, \overline{u}_2]$ of \mathbb{R}^2 , where $\overline{u}_1 = (1,-1)$ and $\overline{u}_2 = (1,1)$.
- 6. Write two important facts about the vectors in a finite dimensional vector space V.

Turn over

7. Consider the bases $B = [\overline{u}_1, \overline{u}_2]$ and $B' = [\overline{u}_1', \overline{u}_2']$ where

 $\overline{u}_1 = (1,0), \overline{u}_2 = (0,1), \overline{u}_1' = (1,1), \overline{u}_1' = (2,1).$ Find the transition matrix $P_{B' \to B}$ from B' to B

- 8. Define row spaces and null spaces an $m \times n$ matrix.
- 9. If $R = \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{3}{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ is the row reduced echelon form of a 3 × 3 matrix A, then verify the

nullity formula.

- 10. Show that the operator $T: \mathbb{R}^2 \to \mathbb{R}^2$ that rotates vectors through an angle θ is one-one.
- 11. Find the image of the line y = 4x under multiplication by the matrix $A = \begin{bmatrix} 5 & 2 \\ 2 & 1 \end{bmatrix}$.
- 12. Confirm by multiplication that x is an eigen vector of A and find the corresponding eigen val $A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix} x = \begin{bmatrix} 1 \\ 2 \end{bmatrix}.$
- 13. Let A be an $n \times n$ matrix. Define inner product on \mathbb{R}^n generated by A. Also write the general matrix of the weighted Euclidear inner product $\langle u, v \rangle = w_1 u_1 v_1 + w_2 u_2 v_2 + \dots + w_n u_n v_n$.
- 14. If u, v are vectors in a real inner product space V, then show that $||u+v|| \le ||u|| + ||v||$.
- 15. If A is an $n \times n$ orthogonal matrix, then show that ||Ax|| = ||x|| for all x in \mathbb{R}^n .

 $(10 \times 3 = 30 \text{ ma})$

Section B (Paragraph/Problem Type Questions)

Answer at least five questions. Each question carries 6 marks. All questions can be attended. Overall Ceiling 30.

- 5. Describe Column Row Expansion method for finding the product AB for two matrices A and B. Use this to find the product $AB = \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 4 \\ -3 & 5 & 1 \end{bmatrix}$.
- 7. If A is an invertible matrix, then show that A^{T} is also invertible and $(AT)^{-1} = (A^{-1})^{T}$.
- 8. Consider the vectors u = (1, 2, -1) and v = (6, 4, 2) in \mathbb{R}^3 . Show that w = (9, 2, 7) is a linear combination of u and v and that w' = (4, -1, 8) is not a linear combination of u and v.
- 9. If $s = \{v_1, v_2, \dots, v_n\}$ is a basis for a vector space V, then show that every vector v in V can be expressed in form $v = c_1v_1 + c_2v_2 + \dots + c_nv_n$ in exactly one way. What are the co-ordinates of v relative to the basis s.
- 0. If A is a matrix with n columns, then define rank of A and show that rank (A) + nullity (A) = n.
- 1. Find the standard matrix for the operator $T: \mathbb{R}^3 \to \mathbb{R}^3$ that first rotates a vector counter clockwise about z-axis through an angle θ , then reflects the resulting vector about yz plane and then projects that vector orthogonally onto the xy plane.
- 2. Define eigen space corresponding to an eigen value λ of a square matrix A. Also find eigen value and bases for the eigen space of the matrix $A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix}$.
- 3. If w is a sub-space of real inner product space v, then show that:
- (a) w^{\perp} is subspace of v.

Ìĝ

(b) $w \cap w^{\perp} = \{0\}.$

 $(5 \times 6 = 30 \text{ marks})$

Turn over

4

Section C (Essay Type Questions)

Answer any **two** questions.

Each question carries 10 marks.

24. (a) Show that every elementary matrix is invertible and the inverse is also an elementary

(b) Find the inverse of
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}$$
 using Row operations.

25. (a) Let V be a vector space and \bar{u} a vector in V and K a scalar. Then show that:

(a)
$$0\bar{u}=0$$
; and

(b)
$$(-1)\bar{u} = -\bar{u}$$
.

- (b) Show that the vectors $v_1 = (1, 2, 1)$, $v_2 = (2, 9, 0)$ and $v_3 = (3, 3, 4)$ form a basis for \mathbb{R}^3 .
- 26. (a) Consider the basis $B = [u_1, u_2]$ and $B' = [u_1^1, u_2^1]$ for R^2 where $u_1 = (2, 2), u_2 = (u_1' = (1, 3), u_2' = (-1, -1))$
 - (i) Find the transition matrix B' to B.
 - (ii) Find the transition matrix B to B'.
 - (b) Find the reflection of the vector x = (1, 5) about the line through the origin that make angle of $\frac{\pi}{6}$ with the x-axis.
- 27. When you can say that a square matrix A is diagonalizable? If A is an $n \times n$ matrix, show the following statements are equivalent:
 - (a) A is diagonalizable; and
 - (b) A has n linearly independent eigen vectors.

 $(2 \times 10 = 20 \, \text{n})$