141232

ì

(Pages: 3)

Name.....

Reg. No.....

FOURTH SEMESTER (CBCSS—UG) DEGREE EXAMINATION APRIL 2023

Mathematics

MTS 4C 04-MATHEMATICS-4

(2019 Admission onwards)

ime: Two Hours

Maximum: 60 Marks

Section A

Answer any number of questions.

Each question carries 2 marks.

Cailing is 20.

- 1. Solve the initial value problem $\frac{dy}{dx} = \frac{-x}{y}$, y(4) = -3.
- 2. Solve $(x^2 9) \frac{dy}{dx} + xy = 0$.
- 3. Find the value of k so that the differential equation $(y^3 + kxy^4 2x) dx + (3xy^2 + 20x^2y^3) dy = 0$ is exact.
- 4. Verify that the functions e^{-3x} , e^{4x} form a fundamental set of solutions of the differential equation y'' y' 12y = 0 on $(-\infty, \infty)$.
- 5. The function $y_1 e^x$ is a solution of y'' y = 0 on the interval $(-\infty, \infty)$, use reduction of order to find a second solution y_2 .
- 6. Find the general solution of y''' 4y'' 5y' = 0.
- 7. Solve the initial value problem $y'' + 4y' + 5y = 35e^{-4x}$, y(0) = -3, y'(0) = 1.
- 8. Find $\mathcal{L}(f(t))$, where $f(t) = \sin 2t \cos 2t$.
- 9. Evaluate $\mathcal{L}^{-1}\left(\frac{s}{(s-2)(s-3)(s-6)}\right)$.

Turn over

 2

6

3

10 Write
$$f(t) = \begin{cases} 2, & 0 \le t < 3 \\ -2, & t \ge 3 \end{cases}$$
 in terms of unit step functions and find $\mathcal{L}(f(t))$

- 11. Show that the functions $f_1(x) = e^x$, $f_2(x) = xe^{-x} e^{-x}$ are orthogonal on [0, 2],
- 12. Show that the partial differential equation $\frac{\partial^2 u}{\partial x^2} + 6 \frac{\partial^2 u}{\partial x \partial y} + 9 \frac{\partial^2 u}{\partial y^2}$ is parabolic.

Section B

Answer any number of questions. Each question carries 5 marks. Ceiling is 30.

13. Solve
$$x \frac{dy}{dx} + y = x^2 y^2$$
.

14. Solve $\frac{dy}{dx} = (x + y + 1)^2$ by using an appropriate substitution.

15.
$$y''' + y'' = e^x \cos x$$
.

16. Solve
$$x^2 y'' - 3xy' + 3y = 2x^4 e^x$$
.

17. Solve
$$y' + 6y = e^{4t}$$
, $y(0) = 2$ using the Laplace transform.

18. Evaluate
$$\mathcal{L}^{-1}\left(\frac{1}{\left(s^2+k^2\right)^2}\right)$$
.

19. Expand f(x) = x, -2 < x < 2 in a Fourier series.

3

C 41232

Section C

Answer any one question.

The question carries 10 marks.

- 20. Solve the initial value problem $y'' 6y' + 9y = t^2 e^{3t}$, y(0) = 2, y'(0) = 17 using Laplace transform.
- 21. Expand $f(x) = \begin{cases} 0, & -\pi < x < 0 \\ \pi x, & 0 \le x < \pi \end{cases}$ in a Fourier series.