102710

20647

(Pages : 3)

Name.....

Reg. No.....

SIXTH SEMESTER U.G. DEGREE EXAMINATION, MARCH 2022

(CBCSS-UG)

Mathematics

MTS 6B 12—CALCULUS OF MULTIVARIABLE

(2019 Admissions)

me: Two Hours and a Half

Maximum: 80 Marks

Section A (Short Answer Questions)

Answer at least ten questions. Each question carries 3 marks. All questions can be attended. Overall Ceiling 30.

- 1. Find the domain and rang of the function f(x,y) = x + 3y 1.
- 2. Evaluate $(x,y,z) \rightarrow \left(\frac{\pi}{2},0,1\right) \frac{e^{2y}(\sin x + \cos y)}{1+y^2+z^2}$.
- 3. Find f_x and f_y if $f(x,y) = x \cos xy^2$.
- 4. Find the directional derivative of $f(x,y) = x^2 \sin 2y$ at $\left(1, \frac{\pi}{2}\right)$ in the direction of $\bar{v} = 3\hat{i} 4\hat{j}$.
- 5. Find $\nabla f(x,y,z)$ if $f(x,y,z) = x^2 + y^2 4z$ and find the direction of maximum increase of f at the point (2, -1, 1).
- 6. Find the relative extrema of the function $f(x,y) = x^2 + y^2 2x + 4y$.
- 7. Find the volume of the solid lying under the elliptic paraboloid $z = 8 2x^2 y^2$ above the rectangular region given by $0 \le x \le 1$, $0 \le y \le 2$.
- 8. Find the mass of the triangular lamina with vertices (0,0),(0,3) and (2,3) given that the density at (x, y) is $\rho(x, y) = 2x + y$.

Turn over

C 206

- 9. Find the Jacobian for the change of variables defined by $x = r \cos \theta$, $y = r \sin \theta$.
- 10. Evaluate $\iint_{\mathbb{R}} 2x y \, dA$ where R is the region bounded by the parabola $x = y^2$ and the line x y.
- 11. Find whether the vector field $\vec{F} = x^2y \hat{i} + xy \hat{j}$ is conservative.
- 12. State Green's theorem.
- 13. Find a parametric representation for the cone $x = \sqrt{y^2 + z^2}$.
- 14. Find the surface area of the torus given by $\vec{r}(u,v) = (2 + \cos u) \cos v \, \hat{i} + (2 + \cos u) \sin v \, \hat{j} + \sin$
- 15. Compute $\iint_{S} \vec{F} \cdot \hat{n} dS$ given $\vec{F}(x, y, z) = (x + \sin z) \hat{i} + (2y + \cos x) \hat{j} + (3z + \tan y) \hat{k}$ and S is the sphere $x^2 + y^2 + z^2 = 1$.

 $(10\times3\approx30\,\mathrm{m}_\odot$

Section B (Paragraph Questions)

Answer at least **five** questions. Each question carries 6 marks. All questions can be attended. Overall Ceiling 30.

- 16. Find f_{xyx} and $f_y x_y$ if $f(x, y) = x \cos y + y \sin x$.
- 17. Find the differential of $w = x^2 + xy + z^2$. Compute the value of dw if (x, y, z) changes from (1 to (0.98, 2.03, 1.01) and compare the value with that of Δw .
- 18. Find the equation of the tangent plane and normal line to the surface $x^2-2y^2-4x^2$ at (4, -2, -1).
- 19. Find the relative extrema of $f(x,y) = -x^3 + 4xy 2y^2 + 1$.
- 20. Find the volume of the solid region bounded by the paraboloid $z = 4 x^2 2y^2$ and the xyl

-

3

C 20647

- 21. Evaluate $\int_{0}^{2} \int_{0}^{x} \int_{0}^{x+y} e^{x} (y+2z) dz dy dx$.
- 22. Determine whether the vector field $\vec{F} = e^x \left(\cos y \,\hat{i} \sin y \,\hat{j}\right)$ is conservative. If so, find a potential function for the vector field.
- 23. Evaluate $\oint_C (e^x + y^2) dx + (x^2 + 3xy) dy$, where C is the positively oriented closed curve lying on the

boundary of the semi annular region R bounded by the upper semicircles $x^2 + y^2 = 1$ and $x^2 + y^2 = 9$ and the x-axis.

 $(5 \times 6 = 30 \text{ marks})$

Section C (Essay Questions)

Answer any **two** questions. Each question carries 10 marks.

- 24. (a) Sketch the graph of $f(x,y) = 9 x^2 y^2$.
 - (b) Show that $(x,y) \to (0,0) \frac{xy}{x^2 + y^2}$ does not exist.
- 25. (a) Find the relative extrema of $f(x,y) = x^3 + y^2 2xy + 7x 8y + 2$.
 - (b) Find the minimum value of $f(x, y, z) = 2x^2 + y^2 + 3z^2$ subject to the constraint 2x 3y 4z = 49.
- 26. Let R be the region bounded by the square with vertices (0,1),(1,2),(2,1) and (1,0). Evaluate $\iint\limits_{\mathbb{R}} (x+y)^2 \sin^2(x-y) dA.$
- 27. Let $\vec{F} = (x, y, z) = 2xyz^2 \hat{i} + x^2z^2\hat{j} + 2x^2yz \hat{k}$.
 - (a) Show that $\vec{\mathbf{F}}$ is conservative and find a scalar function f such that $\vec{\mathbf{F}} = \nabla f$.
 - (b) If \vec{F} is a force field, find the work done by \vec{F} in moving a particle along any path from (0, 1, 0) to (1, 2, -1).

 $(2 \times 10 = 20 \text{ marks})$