Name	
Reg.	No

SIXTH SEMESTER (CUCBCSS—UG) DEGREE EXAMINATION MARCH 2021

Mathematics

MAT 6B 09—REAL ANALYSIS

: Three Hours

Maximum: 120 Marks

Section A

Answer all questions.

Each question carries 1 mark.

Define absolute maximum of a function.

State Bolzano's Intermediate Value Theorem.

Give an example for a uniformly continuous function which is not a Lipschitz function.

Write an example for a Riemann integrable function.

State Boundeness theorem.

Find ||P|| if $P = \{0, 1, 2, 4\}$ in a partition of [0, 4].

Define pointwise convergence of a sequence of functions.

Define uniform norm of a bounded function ϕ on $A \subset \mathbb{R}$.

$$\lim_{n\to\infty}\frac{x}{n}=$$

$$\int_{1}^{\infty} \frac{1}{x^2} \, dx =$$

Write an example for a conditionally convergent improper integral.

Define Gamma function.

 $(12 \times 1 = 12 \text{ marks})$

Turn over

Section B

Answer at least eight questions.

Each question carries 6 marks.

All questions can be attended.

Overall Ceiling 48.

- State and prove Bolzano's Intermediate Value theorem.
- 14. Let I be an interval and let $f: I \to \mathbb{R}$ be continuous on I. Then prove that f(I) is an interval
- 15. Define Lipchitz function. If $f: A \to \mathbb{R}$ is a Lipschitz function, prove that f is uniformly contion A.
- 16. Show that every constant function on [a, b] is in $\Re[a, b]$.
- 17. Suppose that $f, g \in \Re[a, b]$. Prove that $f + g \in \Re[a, b]$.
- 18. Evaluate $\int_1^4 \frac{\sin \sqrt{t}}{\sqrt{t}} dt$.
- 19. Let (f_n) be a sequence of bounded functions on $A \subseteq \mathbb{R}$. Suppose that (f_n) converges uniform A to f. Then prove that $||f_n f||_A \to 0$.
- 20. Show that $\lim_{n\to\infty}\frac{x}{x+n}=0$ for all $x\in\mathbb{R}, x\geq 0$.
- 21. State and prove Weierstrass M-Test for a series of functions.
- 22. Test the convergence of $\int_1^\infty \frac{1}{x} dx$.
- 23. Prove that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$.
- 24. Prove that $\Gamma(n+1) = n \Gamma(n)$ for n > 0.

25. Show that
$$\beta(m,n) = 2 \int_0^{\pi/2} \sin^{2m-1} \theta \cos^{2n-1} \theta d\theta$$
.

26. Evaluate
$$\int_0^\infty e^{-x^2} dx$$
.

 $(8 \times 6 = 48 \text{ marks})$

C 1246

Section C

Answer at least five questions.

Each question carries 9 marks.

All questions can be attended.

Overall Ceiling 45.

- 27. Let I be a closed bounded interval and let $f: I \to \mathbb{R}$ be continuous on I. Then prove that f is uniformly continuous on I.
- 28. Let I = [a, b] be a closed bounded interval and let $f : I \to \mathbb{R}$ be a continuous function on I. Then prove that f has an absolute maximum and absolute minimum on I.
- 29. State and prove Continuous extension theorem.
- 30. If $f \in \Re[a, b]$, then prove that f is bounded on [a, b].
- 31. State and prove Squeeze Theorem.
- 32. State and prove Cauchy Criterion for uniform convergence of sequence of functions.
- 33. Show that $\int_{-\infty}^{\infty} \frac{1+x}{1+x^2} dx$ diverges.
- 34. Prove that $\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}, \forall m, n > 0.$
- 35. Express $\int_0^1 x^m (1-x^n)^p dx$ in terms of Gamma functions and evaluate the integral $\int_0^1 x^5 (1-x^3)^{10} dx.$

 $(5 \times 9 = 45 \text{ marks})$

Turn over

Answer any one question. The question carries 15 marks.

- 36. (a) State and prove Location of roots theorem.
 - (b) Test the uniform continuity of $f(x) = x^2$ on [0, 2].
- 37. (a) State and prove Cauchy Criterion for Riemann Integrability.
 - (b) Show that Dirichlet function is not Riemann Integrable.
- 38. (a) State and prove First form of Fundamental Theorem of Calculus.
 - (b) Show that $\lim_{x \to \infty} \frac{nx}{1 + n^2 x^2} = 0$ for all $x \in \mathbb{R}$.

 $(1 \times 15 = 15 \text{ m})$