C 21546

(Pages : 2)

Name.....

Reg. No.....

FOURTH SEMESTER (CBCSS-UG) DEGREE EXAMINATION, APRIL 2022

Mathematics

MTS 4C 04-MATHEMATICS - 4

(2019 Admission onwards)

Time: Two Hours

Maximum: 60 Marks

Section A

Answer at least eight questions. Each question carries 3 marks. All questions can be attended. Overall Ceiling 24.

- 1. Write the order and degree of the differential equation $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 + 4y = \sin x$.
- 2. Verify that $y = xe^x$ is a solution of y'' 2y' + y = 0.
- 3. Show that $(25x^2 5y)dx + (3y^2 5x)dy = 0$ is an exact differential equation.
- 4. Find the integrating factor corresponding to the differential equation $\frac{dy}{dx} + y \tan x = \cos x$.
- 5. Reduce $\frac{dy}{dx} = (y 2x^2) 7$ to an equation with separable variables.
- 6. Find the general solution of y'' y' 2y = 0.
- 7. Find the particular integral of $y'' + 5y' + 6y = e^{2x}$.
- 8. Find the Laplace transform of $\sin 3t \cos 2t$.
- 9. Find the Laplace transform of $e^{-3t}t^3$.
- 10. Write the inverse Laplace transform of $\frac{s}{s^2 + 16}$.
- 11. Show that the functions $f_1(x) = x^3$ and $f_2(x) = x^2 + 1$ are orthogonal on [-1,1].
- 12. Show that the partial differential equation $3\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial y}$ is parabolic.

 $(8 \times 3 = 24 \text{ marks})$

Turn over

Section B

Answer at least **five** questions, Each question carries 5 marks, All questions can be attended. Overall Ceiling 25.

- 13. Solve (1+x)y dx + (1-y)x dy = 0.
- 14. Solve $(x^2 + y^2)\frac{dy}{dx} = xy$.
- 15. Solve $y'' + y = \tan x$ using the method of variation of parameter.
- 16. Find the Laplace transform of $\frac{1-\cos t}{t^2}$.
- 17. Find the inverse Laplace transform of $\frac{s^2 + 2s + 5}{s^3}$.
- 18. Apply convolution theorem to evaluate the inverse Laplace transform of $\frac{s^2}{\left(s^2+a^2\right)\left(s^2+b^2\right)}$.
- 19. Solve $\frac{\partial u}{\partial x} 2\frac{\partial u}{\partial y} u = 0$ using method of separation of variables.

 $(5 \times 5 = 25 \text{ mark})$

Section C

Answer any one question. The question carries 11 marks.

- 20. Solve $x^3y''' x^2y'' + 2xy' 2y = \cos(2\log x)$.
- 21. Expand $f(x) = x \sin x$ as a Fourier series in $0 < x < 2\pi$.

 $(1 \times 11 = 11 \text{ marks})$