C 4204	7
--------	---

(Pages	:	2)
--------	---	----

Name			

Reg. No.....

FOURTH SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, APRIL 2023

(CBCSS)

Physics

PHY 4C 12—ATOMIC AND MOLECULAR SPECTROSCOPY

(2019 Admission onwards)

Time : Three Hours

Maximum: 30 Weightage

Section A

8 Short questions answerable within 7.5 minutes Answer all questions, each carry weightage 1.

- 1. Give the features of Paschen-Back effect.
- 2. IR and Raman measurement complement each other and the complete picture of the vibrational problem can only be obtained by using both the techniques. Substantiate.
- 3. The observed rotational spectrum of HF shows decrease in the line separation on the high frequency side. Why?
- 4. State and explain Franck Condon Principle.
- Obtain the resonance condition in NMR spectroscopy?
- Why microwave source and techniques have to be applied for the observation of ESR?
- What is the significance of spin-spin coupling?
- 8. Explain how Mossbauer spectrum is useful in understanding electronic structure of molecules.

 $(8 \times 1 = 8 \text{ weightage})$

Section B

4 essay questions answerable within 30 minutes Answer any two questions, each carry weightage 5.

- 9. Explain the concepts underlaying vector atom model and discuss in details LS and JJ coupling schemes in many electron atoms. Give examples
- 10. Describe normal modes and vibration of $\mathrm{H_2O}$ and $\mathrm{CO_2}$ molecules and explain the principle of Fourier transformation Infrared Spectroscopy.

 c_{ϕ}

11. Explain the basic principle of stimulated Raman and Inverse Raman scattering.

- 11. Explain Recoilless emission and absorption of γ -rays and briefly explain the use of ch_{emic_s}
- in understanding molecular structure.

(2 × 5 = 10 weig

Section C

7 problems answerable within 15 minutes Answer any four questions, each carry Weightage 3.

- 13. The red line of cadmium splits into three components separated by 120 MHz when the some placed in a magnetic field of flux density 8.6 mT, the light being examined in direction perpento the magnetic field. Calculate the ratio of charge to mass (e/m) of the electron.
- 14. The first line in the rotational spectrum of carbon monoxide has a frequency of 3.84241 Calculate the rotational constant and hence the C-O bond length in carbon monoxide. Are number is 6.022×10^{23} /mol.
- 15. The first three rotational Raman lines of a linear triatomic molecular are at 4.86, 814 11.36 cm⁻¹ from the exciting Raman lines. Estimate the rotational constant B and the more inertia of the molecule.
- 16. The spectroscopic bond dissociation energy of ${
 m Cl}^{35}$ ${
 m O}^{16}$ radical is 1.9 eV. Calculate the equivalent bond dissociation energy of ClO , if the fundamental vibrational frequency is $780\ \mathrm{cm^{-1}}$
- 17. In the NMR spectrum of N^{14} with I=1, how many spectral lines will be observed? Calculated frequency required for the NMR line at an external field of 1.4T (g = 0.403).
- 18. Calculate the recoil velocity and energy of the free Mossbauer nucleus S_n^{119} when emitting S_n^{119} of frequency 5.76 \times 10¹⁸ Hz. What is the Doppler shift of the γ -ray frequency to N 10 observer? Avogadro number is $6.02 \times 10^{23} \text{ mol}^{-1}$.
- 19. Electron spin resonance is observed in atomic hydrogen at a magnetic field B = 0.34T. Calculate for the electron in the limit value for the electron in the hydrogen atom. If the operating frequency is 9.5 GHz.

 $(4\times3=12\,\mathrm{weight})$