~	80	77	9	n
	O^{1}	"	Same	v

(Pages: 2)

N	am	e	 •••••	•••••	•••••	

Reg. No.....

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, MARCH 2020 (CUCSS)

Physics

PHY 4C 12-ATOMIC AND MOLECULAR SPECTROSCOPY

(2017 Admission onwards)

ime: Three Hours

Maximum: 36 Weightage

Section A

Answer all questions, each carries weightage 1.

- 1. Explain Stark effect.
- 2. State and explain Hund's rule. Give an example.
- 3. Give the selection rules for Zeeman pattern.
- 4. What are hot bands? How are they formed?
- How do you find out the bond length and angles from the rotational spectra for a symmetric top molecule? Give the relevant equations,
- 6. Explain Mutual exclusion principle. In which type of molecule it is observed and why?
- 7. Distinguish between Anti-Stokes Raman scattering and inverse Anti-Stokes Raman Scattering.

 Give the conditions for them to occur.
- Explain the intensity variation of vibrational electronic spectra on the basis of Franck -Condon principle.
- 9. What are progressions and sequences in the vibrational analysis of a spectrum?
- 10. Briefly explain recoilless emission and absorption of gamma rays.
- 1. What is chemical shift? Describe its relevance.
- 2. Derive the resonance condition in ESR spectroscopy.

 $(12 \times 1 = 12 \text{ weightage})$

Section B

Answer any two questions, each carries weightage 6.

- Compare Paschen Back Effect and Zeeman effect. Illustrate with the example of a principal series doublet.
- 14. Discuss in detail the spectra of a diatomic vibrating rotator. Explain the break down of the Born Oppenheimer approximation.

- 15. Describe with the diagrams the Raman Spectrometer and the sample handling techniques for
- 16. Derive Bloch equations in NMR spectroscopy. Describe how they can be used to define

 $(2 \times 6 = 12 \text{ weight})$

Section C

Answer any four questions, each carries weightage 3.

- 17. Compute the interaction energies for pd electrons in LS coupling.
- 18. Rotational and centrifugal distortion constants of HCl molecule are $10.593 \, \mathrm{cm^{-1}}$ 5.3 × $10^{-4} \, \mathrm{cm^{-1}}$ respectively Estimate the vibrational frequency and the force constant of molecule. Given the mass of hydrogen and chlorine are $1.673 \times 10^{-27} \, \mathrm{kg}$. and $58.06 \times 10^{-27} \, \mathrm{respectively}$.
- Describe the method for the structure determination of triatomic molecules using Ran Spectroscopy. Illustrate with the example of CO₂.
- 20. The band origin of a transition in C_2 is observed at 19,378 cm⁻¹ while the rotational structure indicates that the rotational constants in excited and ground states are respective $B' = 1.7527 \text{ cm}^{-1}$ and $B'' = 1.6326 \text{ cm}^{-1}$. Estimate the position of the band head. Which states the larger inter nuclear distance?
- The spectroscopic bond dissociation energy of $^{35}\text{Cl}^{16}\text{O}$ radical is 1.9 eV. Calculate the equilibria bond dissociation energy of ClO, if the fundamental frequency is 780 cm⁻¹. Given Avagain number = $6.022 \times 10^{23} \,\text{mol}^{-1}$, Planck's constant = $6.626 \times 10^{-34} \,\text{Js}$.
- 2. Illustrate the decay scheme of ⁵⁷Co in ⁵⁷Fe with respect to Mössbauer transition.

 $(4 \times 3 = 12 \text{ weights})$