1	n	1	01	27	4
ı	_		-		

(Pages : 2)

Name				
	*			
Reg.	No			

FOURTH SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, APRIL 2024

(CBCSS)

Mathematics

MTH4E11—GRAPH THEORY

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

Part A

Answer all questions.

Each question carries a weightage 1.

- 1. Prove that every connected graph contains a spaning tree.
- 2. If G is a connected graph then prove that $\epsilon \ge v-1$.
- 3. Draw a simple graph G with $\kappa < \kappa' < \delta$.
- 4. What is the maximum number of perfect matching in a tree.
- 5. Define Ramsey numbers.
- 6. Give an example of a graph with $\chi < \Delta + 1$.
- Prove that an inner bridge that avoids outer bridge is transferable.
- 8. If G is non planar, prove that every subdivision of G is non planar.

 $(8 \times 1 = 8 \text{ weightage})$

Part B

Answer any **two** questions from each unit. Each question carries a weightage 2.

Unit I

- 9. Show that an edge e of a graph G is a cut edge of G if and only if e is not contained in no cycle of G.
- 10. If G is a block with $v \geq 3$, then show that any two edges of G lie on a common cycle.
- 11. If G is a simple graph with $v \ge 3$ and $\delta \ge \frac{v}{2}$, then prove that G is hamiltonian.

Turn over

Unit II

- If G is bipartite, prove that $\chi' = \Delta$. Prove that every 3-regular graph without cut edges has a perfect matching.
- 16. Prove that, in a bipartite graph G with $\delta > 0$, the number of vertices in a maximum ind
- set is equal to the number of edges in a minimum edge covering.

Unit III

- 15. Prove that every planar graph is 5-vertex clourable.
- 16. If G is simple, prove that $\pi_{\kappa}(G) = \pi_{\kappa}(G-e) \pi_{\kappa}(G.e)$ for any edge e of G.
- 17. Prove that a digraph D contains a directed path of length χ 1.

 $(6 \times 2 = 12 \text{ w})$

Part C

Answer any two questions.

Each question carries a weightage of 5.

- 18. Prove that a graph is hamiltonian if and only if its closure is hamiltonian.
- 19. Prove that a graph G has a perfect matching if and only if o(G-S) < |S| for all $S \subset V$.
- 20. If G is 4—chromatic, then prove that G contains a subdivision of K_4 .
- 21. If G is a connected simple graph and is neither an odd cycle nor a complete graph, pr $\chi \leq \Delta$.

 $(2 \times 5 = 10 \text{ w})$