D 101272

(Pages: 4)

Name.....

Reg. No.....

FOURTH SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, APRIL 2024

(CBCSS)

Mathematics

MTH4E09—DIFFERENTIAL GEOMETRY

(2019 Admission onwards)

ime: Three Hours

Maximum: 30 Weightage

Part A

Answer all questions.

Each question carries a weightage of 1.

- 1. Sketch the level sets $f^{-1}(-1)$, $f^{-1}(0)$ for $f(x_1, x_2, ..., x_{n+1}) = x_1^2 + x_2^2 + ... + x_n^2 x_{n+1}^2$, n = 1.
- 2. Use Lagrange's multiplier method to find three positive numbers whose sum is 36 and their product is as large as possible.
- 3. Let S be an n-plane $a_1 x_1 + ... + a_{n+1}, x_{n+1} = b$, let $p, q \in S$ and $\mathbf{v} = (p, v) \in S_p$. If α is any parametrized curve in S from p to q, find the parallel transport of \mathbf{v} along α to q.
- 4. Show that $\alpha(t) = (\cos \alpha t) e_1 + (\sin \alpha t) e_2$ is a geodesic in $x_1^2 + x_2^2 + ... + x_{n+1}^2 = 1$ for some $\alpha \in \mathbb{R}$ and for some orthogonal pair of unit vectors $\{e_1, e_2\}$ in \mathbb{R}^{n+1} .
- 5. Compute $\nabla \mathbf{v} f$, where $f: \mathbb{R}^3 \to \mathbb{R}$ and $\mathbf{v} \in \mathbb{R}^3$, $p \in \mathbb{R}^3$ is $f(x_1, x_2, x_3) = x_1 x_2 x_3^2$, $\mathbf{v} = (1, 1, 1, a, b, c)$.
- 6. Compute the line integral $\int_C \left(-x_2 dx_1 + x_1 dx_2\right)$ where C is the ellipse $\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} = 1$, oriented by its inward normal.
- 7. Show that the integral of an exact 1-form over a closed curve is zero.

Turn over

8. Evaluate the normal curvature of an n-sphere S of radius r at $p \in S$ in the direct

(8 x 1

Part B

Answer **two** questions from each unit. Each question carries a weightage of 2.

Unit I

- 9. Determine completeness of the vector field $\mathbf{X}(x_1, x_2) = (x_1, x_2, -x_2, x_1)$ on $\mathbf{U} = \mathbb{R}^2 \{(x_1, x_2, -x_2, x_1) \in \mathbb{R}^2 \{(x_1, x_2, -x_2, x_2) \in \mathbb{R}^2 \{(x_1, x_2, -x_2) \in \mathbb$
- 10. Show that if S is a connected *n*-surface in \mathbb{R}^{n+1} and $g: S \to \mathbb{R}$ is smooth and takes values 1 and -1, then g is constant.
- 11. Show that the set of all unit vectors at all points of \mathbb{R}^2 is a 3-surface in \mathbb{R}^2 .

Unit II

- 12. Let S be an *n*-surface in \mathbb{R}^{n+1} and let $\beta: I \to S$ be a geodesic in S with $\beta(t_0) = \beta(0)$ for some $t_0 \in I$, $t_0 \neq 0$. Show that β is periodic by showing that $\beta(t+t_0) = 1$ all t such that both t and $t+t_0 \in I$.
- 13. If X and Y are smooth vector fields on an *n*-surface S with $\mathbf{v} \in S_p$, $p \in S$, then shows $\nabla_{\mathbf{v}} (\mathbf{X} \cdot \mathbf{Y}) = (\nabla_{\mathbf{v}} \mathbf{X}) \cdot \mathbf{Y}(p) + \mathbf{X}(p) \cdot (\nabla_{\mathbf{v}} \mathbf{Y})$.
- 14. Let η be the 1-form on $\mathbb{R}^2 \{0\}$ defined by $\eta = \frac{-x_2}{x_1^2 + x_2^2} dx_1 + \frac{x_1}{x_1^2 + x_2^2} dx_2$ and let C be the 20. $\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} = 1$. Show that η over C is not exact.

- 15. Let S be the hyperboloid in \mathbb{R}^3 given by $-x_1^2 + x_2^2 + x_3^2 = 1$. Find the normal curvature of S at (0,0,1) in the direction of a unit vector $\mathbf{v} \in \mathbf{S}_p$, oriented by the normal N $(p) = \left(p, \frac{-x_1}{\|p\|}, \frac{x_2}{\|p\|}, \frac{x_3}{\|p\|}\right)$ for $p = (x_1, x_2, x_3) \in \mathbf{S}$.
- 16. Find the Guassian curvature of a cylinder over a plane curve.
- 17. Describe the parametrized n-plane and verify that it is regular.

 $(6 \times 2 = 12 \text{ weightage})$

Part C

Answer any **two** questions. Each question carries a weightage of 5.

- 18. (a) State and prove existence and uniqueness of maximal integral curve of a smooth tangent vector field X on an n-surface $S \subseteq \mathbb{R}^{n+1}$ and through $p \in S$.
 - (b) State and prove Lagrange's Multiplier theorem.
- 19. (a) Show that the Weingarten map of an *n*-surface S at $p \in S$ is self adjoint.
 - (b) Find global parametrization and curvature of $ax_1 + bx_2 = c$, $(a, b) \neq (0, 0)$, oriented by the outward normal.
- 20. (a) For each 1-form w on U (U open in \mathbb{R}^{n+1}), show that there exist unique functions $f_i: U \to \mathbb{R}$ $(i \in \{1, 2, ..., n+1\})$ such that $w = \sum_{i=1}^{n+1} f_i \, dx_i$. Also show that w is smooth if and only if each f_i is smooth.

Turn over

(b) Find the Guassian curvature of the parametrized torus in \mathbb{R}^3 given by :

$$\psi(\theta, \phi) = ((a + b\cos\phi)\cos\theta, (a + b\cos\phi)\sin\theta, b\sin\phi) \text{ where, } a > b > 0.$$

21. Let S be an *n*-surface in \mathbb{R}^{n+1} and let $p \in S$. Show that there exists an open set V; in \mathbb{R}^{n+1} and a parametrized *n*-surface $\phi: U \to \mathbb{R}^{n+1}$ such that ϕ is a one to one $\max_{v \in V} \{v \in V \cap S\}$.

 $(2 \times 5 = 10)_{\text{Wei}}$