D	1	n	1	9	7	1
IJ	1	v	٠.	_	•	

(Pages: 3)

. 7	
Nam	

Reg. No.....

FOURTH SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, APRIL 2024

(CBCSS)

Mathematics

MTH4E08—COMMUTATIVE ALGEBRA

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

Part A

Answer all questions.

Each question carries weightage 1.

- 1. Find a non-zero nilpotent element in the ring \mathbb{Z}_8 of integers mod 8.
- 2. Let \mathbb{Z} be the ring of integers. Let $a = \langle 4 \rangle$ and $b = \langle 6 \rangle$ be ideals of \mathbb{Z} . Find a generator of the ideal a + b.
- 3. Let \mathbb{Z}_2 be the ring of integers mod 2 and \mathbb{Z}_4 be the cyclic group of order 4. Describe an action of \mathbb{Z}_2 on \mathbb{Z}_4 making it an \mathbb{Z}_2 -module.
- 4. Show that in the ring of fractions $S^{-1}A$, for any $s \in S$, s/s is the identity element.
- 5. Let \mathbb{Z} be the ring of integers and I be the ideal generated by 3 ans $S = \mathbb{Z} I$. Verify whether $1/6 \in S^{-1} \mathbb{Z}$.
- 6. Let A = k [x, y] be the polynomial ring over a field k and let $q = (x, y^2)$ be the ideal generated by x and y^2 . Show that q is a primary ideal.
- 7. Verify whether $\frac{2}{3}$ is integral over \mathbb{Z} .
- 8. Show that the polynomial ring k[x] over a field k is integrally closed.

 $(8 \times 1 = 8 \text{ weightage})$

Turn over

Part B

Answer any **two** questions from each unit. Each question carries weightage 2.

Unit I

- 9. Let x be a nilpotent element in a commutative ring A. Show that 1-x is a unit in A.
- 10. Let R be the nilradical of a ring A. Show that A/R has no nonzero nilpotent elements.
- 11. Let L be an A-module and M, N be submodules of L such that $N \subseteq M \subseteq L$. Show that (L/N_M) is isomorphic to L/M.

Unit II

12. Let S be a multiplicatively closed subset of a commutative ring A. Consider \sim on A \times S defi

$$(a,s) \sim (b,t)$$
 if $(at-bs)u = 0$ for some $u \in S$.

Show that \sim is an equivalence relation on A \times S.

- 13. Let N, P be submodules of an A-module M and S be a multiplicatively closed sub-set of A that $S^{-1}(N+P) = S^{-1}N + S^{-1}P$.
- 14. Let q be a primary ideal in a ring A. Show that the radical r(q) of q is a prime ideal.

UNIT III

- 15. Let A be a subring of a ring B and C be the set of all elements of B which are integral over A that C is a subring of B.
- 16. Let A be an integral domain. Show that if A is integrally closed then \mathbf{A}_p is integrally closed then \mathbf{A}_p is integrally closed.
- 17. Let $0 \longrightarrow M' \xrightarrow{\alpha} M \xrightarrow{\beta} M'' \longrightarrow 0$ be an exact sequence of A-modules. Show that Noetherian then M' and M" are Noetherian.

 $(6 \times 2 = 12 \text{ weig})$

Part C

Answer any two questions.

Each question carries weightage 5.

- 18. Let A be a non-zero commutative ring. Show that the following are equivalent.
 - (a) A is a field.
 - (b) The only ideals of A are (0) and (1).
 - (c) Every homomorphism φ from A to a non-zero ring B is injective.
- 19. (a) Let M be an A-module. Show that M is finitely generated if and only if M is isomorphic to a quotient of A^n for some positive integer n.
 - (b) Let M be a finitely generated A-module and R be the Jacobson radical of A. Show that $RM \neq M$.
- 20. (a) Let S be a multiplicatively closed subset of a ring A. Describe the elements and the ring structure of S^{-1} A.
 - (b) Let A, B be rings and S be a multiplicative suset of A. Let $g: A \to B$ be a ring homomorphism such that g(s) is a unit in B for every $s \in S$. Show that there exists a unique homomorphism $h: S^{-1}A \to B$ such that $g = h \circ f$ where $f: A \to S^{-1}$ A is the natural inclusion.
- 21. (a) Define valuation ring.
 - (b) Let B be an integral domain and K be its field of fractions. Prove that if B is a valuation ring over K then:
 - (i) B is a local ring.
 - (ii) If B' is a ring such that $B \subseteq B' \subseteq K$ then B' is a valuation ring of K.
 - (iii) B is integrally closed in K.

 $(2 \times 5 = 10 \text{ weightage})$