D	1	0	1	2	6	6

(Pages: 3)

Name.....

Reg. No.....

FOURTH SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, APRIL 2024

(CBCSS)

Mathematics

MTH4C15—ADVANCED FUNCTIONAL ANALYSIS

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

Part A

Answer all questions. Each question has weightage 1.

- Define spectrum of a bounded operator.
- 2. Prove that for every compact operator $T, 0 \in \sigma(T)$.
- 3. If A and B are symmetric operators and AB = BA, then prove that AB is also symmetric.
- 4. If A is symmetric, then prove that $A^{2n} \ge 0$.
- 5. Prove that the Gelfand transform has the following property:

$$(\widehat{x_1 + x_2}) = \widehat{x}_1(M) + \widehat{x}_2(M).$$

- 6. State Gelfand-Mazur theorem.
- Define regular point of an element in an algebra.
- 8. Define Wiener algebra.

 $(8 \times 1 = 8 \text{ weightage})$

Part B

Answer six questions choosing two from each module.

Each question has weightage 2.

Module I

- 9. Prove that every complex number λ with $|\lambda| > ||A||$ is a regular point of the operator A.
- 10. Let E_1 be a closed subspace of E such that $E \neq E_1 \mapsto E \mapsto X$. Then prove that there exists $y_0 \in E$ with $\|y_0\| = 1$ and such that the distance of y_0 to E_1 satisfies $\operatorname{dist}(y_0, E_1) \ge 1/2$.

Turn over

2

11. Find the spectrum of the operator D_w in l_2 which is defined by $D_w x = (w_1 x_1, w_2)$ $x = (x_1, x_2, \ldots).$

Module II

12. If $A \ge 0$ and $\langle Ax, x \rangle = 0$ then prove that Ax = 0.

2

- 13. If P is an orthoprojection, then prove that $\text{Im}\,P \perp \ker P$.
- 14. Let $\varphi(t) \in K[a,b]$. Then prove that there exists a sequence of polynomials $P_n(t) \searrow \varphi(t)$ for all $t \in [a,b]$.

Module III

- 15. Prove that every complete metric space M is a set of second category
- If X^* is a separable space, then prove that X is also separable.
- 17. Prove that for every proper ideal $I \subseteq A$ there exists a maximal ideal M such that $I \subseteq M$ $(6 \times 2 = 12 \text{ w})$

Part C

Answer two questions. Each question has weightage 5.

- 18. State and prove the first Hilbert-Schmidt theorem.
- 19. (a) Let $A_0 \le A_1 \le ... \le A_n \le ... \le A$. Then prove that there exists a strong limit of $(A_n | A_n)$
 - (b) If $P_1P_2 = P_1$, then prove that $E_1 \mapsto E_2$ and $P_1 \le P_2$. Also, prove that $P_1 \le P_2$ implies P_1 and $E_1 \mapsto E_2$.
- 20. If K is perfectly convex in a Bananch space X, then prove that :

$$\overset{\circ}{\mathbf{K}} = \overset{c}{\mathbf{K}} = \overset{c}{\mathbf{K}} = \left(\overset{\circ}{\mathbf{K}}\right).$$

21. Let $e = \{e_k\}_{k=1}^{\infty}$ a complete linearly independent system in a Banach space X. Then, prove that e is a basis of X if and only if the projections U_n defined by :

$$u_n\left(\sum_{k=1}^m a_k e_k\right) = \sum_{k=1}^n a_k e_k$$

for all $a_k \in \mathbb{F}$ (if m < n the values a_k for k > m are assumed to be zero) on the dense subset $M = \operatorname{span} \{e\}$ are uniformly bounded.

 $(2 \times 5 = 10 \text{ weightage})$