(Pages: 3)

Name.....

Reg. No.....

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, MARCH 2020

(CUCSS)

Mathematics

MT4 E14—DIFFERENTIAL GEOMETRY

ne: Three Hours

Maximum: 36 Weightage

Part A

Answer all questions.

Each question carries weightage 1.

- 1. Describe the level set at c=2 for the function $f(x_1,x_2)=x_1+x_2$.
- 2. Sketch the vector field on \mathbb{R}^2 given by X(p) = (1, 0).
- 3. Show that the plane curve $x_1 + 2x_2 + 3x_3$ is a level set of some function f.
- 4. Give an orientation on the 2-sphere.
- 5. Define Gauss map.
- 6. Give an example of a vector field along a parametrized curve.
- 7. Let α be a geodesic on S. Show that $\dot{\alpha}' = 0$ along α .
- 3. Define parallel vector field along a parametrized curve α .
- Show that $\nabla_{v+w} f = \nabla_v f + \nabla_w f$ for all smooth functions f.
- Find $L_p(v)$ for p = (1, 0, 0) and v = (2, 1, 0) on the sphere $x_1^2 + x_2^2 + x_3^2 = 1$.
- . Find the length of the parametrized curve $\alpha:[0,\pi]\to\mathbb{R}^2$ given by $\alpha(t)=(\cos t,\sin t)$.
- Find the Gaussian curvature of an n-surface S at p where the principal curvatures are 1, 1/2, 1/3...

Part B

Answer any seven questions. Each question carries weightage 2.

- 15. Sketch the gradient field of the function $f(x_1, x_2) = x_1^2 + x_2^2$.
- 16. Describe the tangent space of the unit circle at p = (1, 0).
- 17. Find the spherical image of the 2-sphere $x_1^2 + x_2^2 + x_3^2 = 2$.
- 18. With the usual notations prove that $(f\dot{X}) = f'X + f\dot{X}$
- 19. Let S be an *n*-surface. Prove that if S contains a line segment $\alpha(t) = p + tv$ for $t \in [0, 1]$ that a geodesic on S.
- 20. Let X' denote the covariant derivative of a vector field X along a parametrized Curve of that (X + Y)' = X' + Y'
- 21. Find the curvature k of the plane curve $\frac{x_1^2}{3} + \frac{x_2^2}{5} = 1$.
- 22. Let k(p) be the curvature of a palne curve at p and v be a non-zero vector tangent to th curve at p. Show that $k(p) = L_p(v) \cdot v / ||v^2||$.
- 23. Let N(v) be the normal section of an n—surface determined by a unit vector v. Show that I isomorphic to a copy of \mathbb{R}^2 .
- 24. Described the parametrized torus in \mathbb{R}^4 .

Part C

Answer any two questions. Each question carries weightage 4.

- 25. (a) Define integral curve of a vector field.
 - (b) Show that for the vector field $X(x_1, x_2) = (-x_2, x_1)$, the parametrized curve a $\alpha(t) = (\cos t \sin t, \cos t + \sin t)$ in an integral curve on it.
 - (c) Find an integral curve for the vector field given by $X(x_1, x_2) = (x_2, x_1)$.
- 26. Let S be an *n*-surface in \mathbb{R}^{n+1} and let X be a smooth tangent vector field on S and let $p \in S$. Show that there exists an open interval I containing 0 and a parametrized curve $\alpha: I \to S$ such that:
 - (a) α (0) = p; and
 - (b) $\dot{\alpha}(t) = X(\alpha(t))$ for $t \in I$.
- 27. Let S be an *n*-surface in \mathbb{R}^{n+1} and $\alpha: I \to S$ be a prarametrized curve in S. Let X be a vector field along α . Prove that:
 - (a) X is parallel along α if and only if X satisfies the differential equation

$$\dot{X}(t) + (X(t) \cdot \dot{N}(\alpha(t))) \cdot N(\alpha(t)) = 0$$
 for all t.

- (b) If X is a solution of the above differential equation then X is tangent to S along α .
- 28. (a) Define second fundamental form of an oriented n-surface.
 - (b) Let S be a compact n-surface in \mathbb{R}^{n+1} . Snow that there exists $p \in S$ such that the second fundamental form at p is definite.

 $(2 \times 4 = 8 \text{ weightage})$