\mathbb{C}	8	07	08

(Pages: 3)

Name	********
------	----------

Reg. No.....

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, MARCH 2020 (CUCSS)

Mathematics

MT4 E07-ADVANCED FUNCTIONAL ANALYSIS

me: Three Hours

Maximum: 36 Weightage

Part A

Answer all the questions. Each question carries weightage 1.

- 1. Define dual basis with reference to a basis of a finite dimensional normed space.
- 2. What is the dual of \mathbb{K}^n with norm $\| \|_p$.
- 3. Let X and Y be Banach spaces and $F \in BL(X, Y)$. If R(F) = Y is bounded, then prove that F' is bounded below.
- 4. Show that dual of a separable reflexive normed space is separable.
- 5. Define adjoint of a bounded operator on a Hilbert space.
- 6. What is meant by complemented subspace property.
- Define uniformly continuous linear operator on an innerproduct space. Show that a bounded linear operator is uniformly continuous.
- Let H be a Hilbert space and $A \in BL(H)$. Then show that $||A|| = ||A^*||$.
- . Define normal operator and unitary operator.
- . Define Fredholm integral operator on a Hilbert space.
- . If A and B are positive operators, prove that A + B is also a positive operator.
- . Let H be a Hilbert space and $A \in BL(X)$. If A is invertible, then prove that the adjoint A* is invertible.

- 18. Prove that the numerical range of an operator on a Hilbert space is a bounded substantial scalars.
- 14. Define approximate eigenvalue of an operator.

(14 × 1 = 1

Part B

Answer any seven questions. Each question carries weightage 2.

- 15. Let X be a normed space. If X' is separable, then prove that X is separable.
- 16. Let X and Y be normed spaces. If F_1 , $F_2 \in BL(X, Y)$, prove that $(F1 + F2)' = F_1' + F_2'$
- 17. Let X be a Banach space and $A \in BL(X)$. Then with usual notations $\sigma(A) = \sigma_{\alpha}(A) \cup \sigma_{e}(A') = \sigma(A')$.
- 18. Let X be a reflexive normed space. Prove that every bounded sequence in X has a weal subsequence.
- 19. Prove that a subset of a Hilbert space is weak bounded if and only if it is bounded.
- 20. Let H be a Hilbert space and $A \in BL(H)$. Prove that $||A^*A|| = ||A||^2 = ||AA^*||$.
- 21. Let H be a Hilbert space and A ∈ BL (H). Prove that A* is injective if and only if the R (A) is dense in H.
- 22. Let H be a Hilbert space and A, $B \in BL(H)$ be normal operators. Then if A commutes B commutes with A*, prove that A + B and AB are normal
- 23. Let H be a Hilbert space and $A \in BL(H)$. Prove that $k \in \sigma_a$ (A) if and only if $\overline{k} \in \sigma_a$
- 24. Let H be a Hilbert space and $A \in BL(H)$. Show that if A is compact, then A^* is also C

Part C

Answer any two questions. Each question carries weightage 4.

- 25. Prove that the dual of c_{∞} with the norm $\| \|_p$ is linearly isometric to l^q where 1/p + 1/q = 1 and $1 \le p \le \infty$.
- 26. State and prove Riesz representation theorem for C([a,b]).
- 27. Let H be a non-zero Hilbert space and $A \in BL(H)$ be self adjoint. With usual notations, show that $\{m_A, M_A\} \subset \sigma_a(A) = \sigma(A) \subseteq [m_A, M_A]$.
- 28. Let H be a Hilbert space and A ∈ BL (H) be Hilbert-Schmidt operator. Then prove that A is compact.

 $(2 \times 4 = 8 \text{ weightage})$