	420	197
\mathbf{c}	440	46

(Pages: 4)

Name.....

Reg. No.....

FOURTH SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, APRIL 2023

(CBCSS)

Mathematics

MTH 4E 09—DIFFERENTIAL GEOMETRY

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

Part A

Answer all questions.

Each question has weightage 1.

- 1. Sketch level sets of the function $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2$ at heights 0, and 4.
- 2. Sketch the following vector field on \mathbb{R}^2 : X(p) = (p, X(p)) where $X(x_1, x_2) = (x_2, x_1)$.
- 3. Define Gauss map. Illustrate with an example.
- 4. Define geodesic. Show that geodesics have constant speed.
- 5. Define Levi-Civita parallel vector field. Show that if X and Y are Levi-Civita parallel vector fields along α , then X · Y is constant along α .
- 6. Find the normal curvature of $-x_1^2 + x_2^2 + x_3^2 = 1$ at a point on the surface in the direction of v.
- 7. Define parametrized *n*-surface in \mathbb{R}^{n+k} , $k \ge 0$.
- 8. Define (i) Differential 1-form; and (ii) Exact 1-form.

 $(8 \times 1 = 8 \text{ weightage})$

Turn over

C 42

Part B

Answer six questions choosing two from each module.

Each question has weightage 2.

Module I

- 9. Find the integral curve through p = (1,1) of the vector field on \mathbb{R}^2 given X(p) = (p, X(p)) where X(p) = (0,1).
- 10. Let $S = f^{-1}(c)$ be an n-surface in \mathbb{R}^{n+1} , where $f: U \to \mathbb{R}$ is such that $\nabla f(q) \neq 0$ for all $q \in S$, let X be a smooth vector field on U whose restriction to S is a tangent vector field on S. If $\alpha: I$ is any integral curve of X such that $\alpha(t_0) \in S$ for some $t_0 \in I$, then prove that $\alpha(t) \in S$ for all t
- 11. Describe the spherical image, when n = 1 and when n = 2, of the surface

$$x_1^2 + \dots x_{n+1}^2 = 1$$

oriented by $\frac{\nabla f}{\|\nabla f\|}$ where f is the function defined by $f(x_1,...,x_n) = x_1^2 + ... + x_{n+1}^2$.

MODULE II

- 12. Find the velocity, the acceleration, and the speed of the parametrized curve $\alpha(t) = (\cos t, \sin t, t)$.
- 13. Evaluate the Weingarten map L_p for $x_2^2 + x_3^2 = a^2$ in \mathbb{R}^3 .
- 14. Let S be an n-surface in \mathbb{R}^{n+1} , let $p, q \in S$, and let α be a piecewise smooth parametrized curfrom p to q. Then prove that parallel transport $P_{\alpha}: S_p \to S_q$ along α is a vector space isomorphi which preserves dot products.

C 42027

3

MODULE III

- 15. Let V be a finite dimensional vector space with dot product and let L: V \rightarrow V be a self-adjoint linear transformation on V. Let $S = \{v \in V : v \cdot v = 1\}$ and define $f : S \rightarrow \mathbb{R}$ by $f(v) = L(v) \cdot v$. Suppose f is stationary at $v_0 \in S$. Then prove that $L(v_0) = f(v_0)v_0$.
- 16. Find the Gaussian curvature $K:S \to \mathbb{R}$ where S is the hyperboloid

$$\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} - \frac{x_3^2}{c^2} = 1.$$

17. State and prove inverse function theorem for n-surface.

 $(6 \times 2 = 12 \text{ weightage})$

Part C

Answer **two** questions.

Each question has weightage 5.

- 18. (a) Let U be an open subset in \mathbb{R}^{n+1} and let $f: U \to \mathbb{R}$ be smooth. Let $p \in U$ be a regular point of f, and let c = f(p). Then prove that the set of all vectors tangent to $f^{-1}(c)$ at p is equal to $[\nabla f(p)]^{\perp}$.
 - (b) Prove that the gradient of f at $p \in f^{-1}(c)$ is orthogonal to $f^{-1}(c)$ at p.
 - Let C be an oriented plane curve. Then prove that there exists a global parametrization of C if and only if C is connected.
 - 20. Let S be an n-surface in \mathbb{R}^{n+1} and let $p \in S$, and let $v \in S_p$. Then prove that there exists an open interval I containing 0 and a geodesic $\alpha: I \to S$ such that :
 - (i) $\alpha(0) = p$ and $\dot{\alpha}(0) = v$.
 - (ii) If $\beta: \tilde{I} \to S$ is any other geodesic in S with

 $\beta(0) = p$ and $\dot{\beta}(0) = v$, then $\tilde{\mathbf{I}} \subset \mathbf{I}$ and $\beta(t) = \alpha(t)$ for all $t \in \tilde{\mathbf{I}}$.

Turn over

376850

(

(a) Let S be an oriented n-surface in \mathbb{R}^{n+1} and let $p \in S$. Let Z be any non-zero n_{0rm_0} field on S such that $N = \frac{Z}{\parallel Z \parallel}$ and let $\{v_1, \ldots, v_n\}$ be any basis for S_p . Then prove the

$$K(p) = (-1)^{n} \det \begin{pmatrix} \nabla_{v_{1}} Z \\ \vdots \\ \nabla_{v_{n}} Z \\ Z(p) \end{pmatrix} / \|Z(p)\|^{n} \det \begin{pmatrix} v_{1} \\ \vdots \\ v_{n} \\ Z(p) \end{pmatrix}.$$

(b) Let S_1 be an n-surface in \mathbb{R}^{n+1} and let S_2 be an m-surface in \mathbb{R}^{m+1} . Suppose $\varphi: S_1 \to \mathbb{R}$ is a smooth map such that $\varphi(S_1) \subset S_2$. Show that $d\varphi = T(S_1) \to T(S_2)$.

 $(2 \times 5 = 10 \text{ weigh})$