D 11675

(Pages: 3)

Name......Reg. No.....

THIRD SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, NOVEMBER 2021

[November 2020 for SDE/Private Students]

(CBCSS)

Mathematics

MTH 3C 11-MULTIVARIABLE CALCULUS AND GEOMETRY

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

General Instructions (Not applicable to SDE/Private Students)

- In cases where choices are provided, students can attend all questions in each section.
- The minimum number of questions to be attended from the Section / Part shall remain the same.
- The instruction if any, to attend a minimum number of questions from each sub section sub part sub division may be ignored.
- 4. There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage of the Section / Part.

Part A

Answer all questions.

Each question has weightage 1.

- 1. Prove that if $A \in L(\mathbb{R}^n, \mathbb{R}^m)$, then $||A|| < \infty$ and A is a uniformly continuous mapping of \mathbb{R}^n into \mathbb{R}^m .
- 2. Show that det [A] = 0 if [A] is $n \times n$ matrices having two equal columns.
- 3. Define a parametrized curve. Find the parametrization for the level curve $\frac{x^2}{4} + \frac{y^2}{9} = 1$.
- 4. Verify whether $\sigma(u,v) = (u,v^2,v^3)$; $u,v \in \mathbb{R}$ a regular surface patch or not.

Turn over

 2

D 1167

- 5. Find the equation of the tangent plane of the surface patch $\sigma(u,v) = (u,v,u^2-v^2)$ at the point (1,1,0).
- 6. Show that $x^2 + y^2 = z^2$ is a smooth surfaces.
- 7. Calculate the first fundamental forms of the surface $\sigma(u, v) = (\cosh u, \sinh u, v)$.
- 8. Show that every local isometry is conformal. Give an example of a conformal map that is not a \log isometry.

 $(8 \times 1 = 8 \text{ weights})$

Part B

Answer **six** questions choosing **two** from each unit. Each question has weightage 2.

UNIT 1

- 9. Let Ω be the set of all invertible linear operator on \mathbb{R}^n , show that :
 - (a) If $A \in \Omega$, $B \in L(\mathbb{R}^n)$, and $\|B A\|$, $\|A^{-1}\| < 1$, then $B \in \Omega$.
 - (b) Ω is an open subset of $L(\mathbb{R}^n)$, and the mapping $A \to A^{-1}$ is continuous on Ω .
- 10. Show that if X is a complete metric space, and if φ is a contraction of X into X, then there exist and only one $x \in X$ such that $\varphi(x) = x$.
- 11. Show that a linear operator A on \mathbb{R}^n is invertible if and only if $\det[A] \neq 0$.

UNIT 2

- 12. If $\gamma(t)$ be a regular curve in \mathbb{R}^3 , then show that its curvature is $\kappa = \frac{\|\ddot{\gamma} \times \dot{\gamma}\|}{\|\dot{\gamma}\|^3}$.
- 13. Let γ be a unit-speed curve in \mathbb{R}^3 with constant curvature and zero torsion. Then, show t^{β^3} a parametrization of part of a circle.

 3

D 11675

Suppose that two smooth surfaces S and S are diffeomorphic and that S is orientable. Prove that Š is orientable.

UNIT 3

- Show that any tangent developable is locally isometric to a plane.
- Calculate the Gaussian curvature of $\sigma(u,v) = (f(u)\cos v, f(u)\sin v, g(u))$ f > 0 and $\dot{f}^2 + \dot{g}^2 = 1$.
- Calculate the principal curvatures of the catenoid $\sigma(u, v) = (\cosh u \cos v, \cosh u \sin v, u)$.

 $(6 \times 2 = 12 \text{ weightage})$

Part C

Answer two questions. Each question has weightage 5.

- State and prove the Implicit function theorem.
- Let $\gamma(s)$ and $\tilde{\gamma}(s)$ be two unit-speed curves in \mathbb{R}^3 with the same curvature $\kappa(s)>0$ and the same torsion $\tau(s)$ for all s. Then, there is a direct isometry M of \mathbb{R}^3 such that $\bar{\gamma}(s) = M(\gamma(s))$ for all s. Further, if k and t are smooth functions with k>0 everywhere, there is a unit-speed curve in \mathbb{R}^3 whose curvature is k and whose torsion is t.
- Let S and \tilde{S} be surfaces and let $f: S \to \tilde{S}$ be a smooth map. Then, prove that f is a local diffeomorphism if and only if, for all $p \in S$, the linear map $D_p f : T_p S \to T_{f(p)} \tilde{S}$ is invertible.
- A local diffeomorphism $f: S_1 \to S_2$ is conformal if and only if there is a function $\lambda: S_1 \to \mathbb{R}$ such that $f * \langle v, w \rangle_p = \lambda(p) \langle v, w \rangle_p$ for all $p \in S_1$ and $v, w \in T_pS_1$.

 $(2 \times 5 = 10 \text{ weightage})$