D	1	1	6	8	0
$\boldsymbol{\mathcal{L}}$	ж,		•	\sim	

(Pages: 3)

Na	me	 •••••	

Reg. No.....

THIRD SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, NOVEMBER 2021

[November 2020 for SDE/Private Students] (CBCSS)

Mathematics

MTH 3E 02—CRYPTOGRAPHY

(2019 Admission onwards)

ime : Three Hours

Maximum: 30 Weightage

General Instructions (Not applicable to SDE/Private Students)

- In cases where choices are provided, students can attend all questions in each section.
- 2. The minimum number of questions to be attended from the Section/Part shall remain the same.
- 3. The instruction if any, to attend a minimum number of questions from each sub section/sub part/sub division may be ignored.
- 4. There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage of the Section / Part.

Part A (Short Answer Questions)

Answer all questions.

Each question carries weightage 1.

- Define Euler phi-function and Affine Cipher. Find the number of keys in the Affine Cipher over Z₃₀.
- 2. Prove that $-a \mod m = m (a \mod m)$ where a, m > 0 and $a \neq 0 \pmod m$.
- Decrypt the message XHPEN BDYQ which was produced with Auto key Cipher having key K = 16.
- 4. Define concave function and show that the function $f(x) = x^2$ is concave in the interval $(-\infty, \infty)$.
- 5. Explain entropy and redundancy of a natural language.
- Describe block ciphers with example.
- 7. State the Piling up Lemma.

Turn over

 \mathcal{D}

8. Define Strongly Universal Hash Families. Prove that for such a (N, M) hash family

$$(X, Y, \kappa, H), |\{K \in \kappa : h_{\kappa}(x) = y\}| = \frac{|\kappa|}{M}, \forall x \in X, y \in Y.$$

 $(8 \times 1 = 8 \text{Wej})$

Part B (Short Essays)

Answer any **two** questions from each unit. Each question carries weightage 2.

Unit 1

- 9. List all invertible elements in \mathbf{Z}_m for m=28,35.
- 10. Define involutory key. Find the number of involutory keys in the Hill Cipher over Z_{y_i} m=2.
- 11. Explain Cryptanalysis of LFSR Stream Cipher.

UNIT 2

- 12. Let S is a random variable representing the sum of a pair of dice. Compute H (S).
- Prove that the Shift Cipher achieves perfect secrecy if every key is used probability 1/26.
- 14. Define unicity distance of a cryptosystem. Calculate it for Hill Cipher with m x **

Unit 3

15. Define balanced S-box. Prove that for a balanced S-box

$$N_{L}(0,b) = 2^{m-1}$$
, \forall integers b such that $0 < b \le 2^{n} - 1$.

- 16. Describe Data Encryption Standard (DES).
- 17. Compare keyed and unkeyed hash functions. Define (N, M) hash family.

3

D 11680

Part C (Essays)

Answer any two questions. Each question carries weightage 5.

- 18. (a) Define Vigenere Cipher. Encrypt the message ATTACK AT ONCE using keyword READY.
 - (b) Define Hill Cipher. Prove that t the number of 2×2 invertible matrices over \mathbb{Z}_p is: $(p^2-1)(p^2-p)$, where p prime.
- 19. (a) Suppose (P, C, K, E, D) is a cryptosystem where |C| = |P| and keys are chosen equiprobably. Let $R_{\rm L}$ be the redundancy of the language. Then prove that given a string of cipher text of length n, the expected number of spurious keys $\overline{s}_n \ge \frac{|K|}{|P|^{nR_L}} - 1$.
 - (b) Consider a cryptosystem in which $P = \{a, b, c\}$, $K = \{K_1, K_2, K_3\}$ and $C = \{1, 2, 3, 4\}$. The encryption matrix is as follows:

Given that the keys are chosen equiprobably and the plaintext probability distribution is $\Pr\left[a\right]=1/2$, $\Pr\left[b\right]=1/3$, $\Pr\left[c\right]=1/6$. Then compute H (P), H (C), H (K), H (K/C), H (P/C).

- Explain Linear cryptanalysis and Differential cryptanalysis. 20.
- $Describe\ Message\ Authentication\ Codes\ (MAC)\ and\ explain\ the\ construction\ of\ Nested\ MAC, HMAC.$