*	-	-	1		
8 B			6-	' <i>[</i>	6-
\mathbf{D}	T		v		v

(Pages: 3)

Name	•••••

Reg. No.....

THIRD SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, NOVEMBER 2021

[November 2020 for SDE/Private Students]

(CBCSS)

Mathematics

MTH 3C 12—COMPLEX ANALYSIS

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

General Instructions (Not applicable to SDE/Private Students)

- In cases where choices are provided, students can attend all questions in each section.
- 2. The minimum number of questions to be attended from the Section / Part shall remain the same.
- The instruction if any, to attend a minimum number of questions from each sub section / sub part / sub division may be ignored.
- 4. There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage of the Section / Part.

Part A

Answer all questions.

Each question has weightage 1.

- 1. Find the radius of convergence of the power series $\sum_{n=0}^{\infty} a^n z^n$, $a \in \mathbb{C}$.
- 2. What is Mobius transformation? Is the mapping $T(z) = \overline{z}$ a Mobius transformation, Justify your claim.
- 3. Find the image of the following points in the complex plane 0, 1 + i, 3 + 2i on the unit sphere.
- 4. Show that $\lim_{n \to \infty} \frac{1}{n^n} = 1$.
- 5. If $\sum a_n$ converges absolutely then prove that $\sum a_n$.
- 6. Find the image of the lines $x = \alpha$ under the mapping $\cos z$.

Turn over

 88^{δ}

- 7. Determine the type of singularity of $f(z) = \frac{\cos z}{z}$ at z = 0.
- 8. Find the residue of $f(z) = \tan z$ at $z = \frac{\pi}{2}$.

$$(8 \times 1 = 8)_{\text{Weight}}$$

 $(6 \times 2^{\frac{1}{2}})^{4}$

Part B

Answer six questions choosing two from each unit. Each question has weightage 2.

Unit I

9. Define $\gamma:[0,2\pi]\to \mathbb{C}$ by $\gamma(t)=\exp(\operatorname{int})$ where n is some integer (positive, negative or zero

that
$$\int_{\gamma}^{1} dz = 2\pi i n$$
.

- 10. Prove that there is no branch of the logarithm defined on $G = C \{0\}$.
- Prove that a Mobius transformation carries circles into circles.

Unit II

- 12. Show that the Integral Formula follows from Cauchy's Theorem.
- 13. If $\gamma:[0,1]\to \mathbb{C}$ is a closed rectifiable curve in G such that $\gamma\sim 0$ then prove that $n(\gamma:\mathbb{N})$ in C - G.
- 14. Find $\int_{z}^{\frac{-1}{2}} dz$ where γ is the upper half of the unit circle from +1 to -1.

Unit III

- 15. If γ is piecewise differentiable and $f:[a,b]\to \mathbb{C}$ is continuous then prove that $\int_a^b f dr = \int_a^b f dr = \int_a^b$
- 16. If G is a region and suppose that $f: G \to C$ is analytic and $a \in G$ such that $|f(a)|^{\frac{1}{2}}$ z in G. Show that either f(a) = 0 or f is constant.
- 17. If γ is a closed rectifiable curve in G such that $\gamma \sim 0$ then $n(\gamma; w) = 0$ for all w in C^{-1}

3

D 11676

Part C

Answer two questions. Each question has weightage 5.

18. Let $f(z) = \sum_{n=0}^{\infty} a_n (z=a)^n$ have radius of convergence R > 0. Then:

- (a) For each $k \ge 1$ the series $\sum_{n=k}^{\infty} n(n-1) \dots (n-k+1) a_n (z-a)^{n-k}$ has radius of convergence R.
- The function f is infinitely differentiable on B (a,R) and, furthermore, $f^{k}(z)$ is given by $\sum_{n=-k}^{\infty} n(n-1) \dots (n-k+1) a_n (z-a)^{n-k} \text{ for all } k \ge 1 \text{ and } |z-a| < R.$

(c) For
$$k \ge 1, \alpha_n = \frac{1}{n!} f^n(\alpha)$$
.

- State and prove open mapping theorem.
- 20. State and prove Goursat's Theorem.
- 21. (a) Evaluate the integral $\int_{0}^{\infty} \frac{e^{z} e^{-z}}{z^{n}} dz$ where n is a positive integer and $\gamma(t) = e^{it}, 0 \le t \le 2\pi$.
 - (b) Prove the following Minimum Principle. If f is a non-constant analytic function on a bounded open set G and is continuous on G^- , then either f has a zero in G or |f| assumes its minimum value on ∂G. $(2 \times 5 = 10 \text{ weightage})$