(Lakes: Z)	(P	ages	:	2)
------------	-----------	------	---	----

Name	 •••••	•••••	••••••

THIRD SEMESTER M.A./M.Sc./M.Com. DEGREE (REGULAR) EXAMINATION NOVEMBER 2020

(CBCSS)

Mathematics

MTH 3C 11-MULTIVARIABLE CALCULUS AND GEOMETRY

(2019 Admissions)

Time: Three Hours

Maximum: 30 Weightage

General Instructions

- 1. In cases where choices are provided, students can attend all questions in each Section / Part.
- 2. The minimum number of questions to be attended from the Section/Part shall remain same.
- 3. There will be an overall ceiling for each Section/Part that is equivalent to maximum weightage of the Section/Part.

Part A

Answer all questions. Each question has weightage 1.

- 1. Suppose X is a vector space, and dim X = n. Show that the set E of n vectors in X spans X if and only if E is independent.
- 2. Show that if I is the identity operator on \mathbb{R}^n , then $\det[I] = \det(e_1, e_2, ..., e_n) = 1$.
- 3. Define a tangent vector. Calculate the tangent vector of the curve $\gamma(t) = (\cos^2 t, \sin^2 t)$.
- 4. Show that, if f(x, y) is a smooth function, its graph $\{(x, y, z) \in \mathbb{R}^3 | z = f(x, y)\}$ is a smooth surface with atlas consisting of the single regular surface patch

$$\sigma(u,v) = (u,v,f(u,v)).$$

- 5. Show that, if $\sigma(u,v)$ is a surface patch, the set of linear combinations of σ_u and σ_v is unchanged when σ is reparametrized.
- 6. Calculate the first fundamental forms of the surface $\sigma(u,v) = (u-v,u+v,u^2+v^2)$.
- 7. Show that $\|\sigma_u \times \sigma_v\| = (\|\sigma_u\| \|\sigma_v\| (\sigma_u \cdot \sigma_v)^2)^{1/2}$.
- 8. Show that the second fundamental form of a plane is zero.

 $(8 \times 1 = 8 \text{ weightage})$

Part B

Answer any **six** questions. Each question has weightage 2.

- 9. Show that a linear operator on a finite-dimensional vector space X is one-to-one if and only if the range of A is all of X.
- 10. Show that if $A, B \in L(\mathbb{R}^n, \mathbb{R}^m)$ and c is a scalar, then $||A + B|| \le ||A|| + ||B||, ||cA|| \le |c||A||$ Also show that $L(\mathbb{R}^n, \mathbb{R}^m)$ is a metric space with the distance between A and B defined as ||A B||.
- 11. Prove that det([B][A]) = det[B]det[A], for nxn matrices [A] and [B].
- 12. Compute the curvature of the circular helix $\gamma(\theta) = (a\cos\theta, a\sin\theta, b\theta); \theta \in \mathbb{R}$.
- 13. Define a surface. Show that any open disc in the xy-plane is a surface.
- 14. Define orientable surface. Show that Mobius band is not orientable.
- 15. Show that $\sigma(u,v) = (\operatorname{sech} u \cos v, \operatorname{sech} u \sin v, \tanh u)$ is a regular surface patch for S².
- 16. Show that Gaussian curvature of a ruled surface is negative or zero.
- 17. Calculate the principal curvatures of the torus $\sigma(\theta, \varphi) = ((a + b\cos\theta)\cos\varphi, (a + b\cos\theta)\sin\varphi, b\sin\theta).$

 $(6 \times 2 = 12 \text{ weightage})$

Part C

Answer any two questions. Each question has weightage 5.

- 18. State and prove the Inverse function theorem.
- 19. Show that f is a local diffeomorphism if and only if, for all $p \in S$, the linear map $D_p f : T_p S \to T_{f(p)} \tilde{S}$ is invertible, where S and \tilde{S} are surfaces and $f : S \to \tilde{S}$ a smooth map.
- 20. Let $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ be a unit-speed curve, let $S_0\in(\alpha,\beta)$ and let φ_0 be such that $\dot{\gamma}(s_0)=(\cos\varphi_0,\sin\varphi_0)$. Then there is a unique smooth function $\varphi:(\alpha,\beta)\to\mathbb{R}$ such that $\varphi(s_0)=\varphi_0$ and $\dot{\gamma}(s)=(\cos\varphi(s),\sin\varphi(s))$ holds for all $s\in(\alpha,\beta)$.
- Prove that a smooth map $f: S_1 \to S_2$ is a local isometry if and only if the symmetric bilinear forms \langle , \rangle_p and $f^* \langle , \rangle_p$ on $T_p S_1$ are equal for all $p \in S_1$.

 $(2 \times 5 = 10 \text{ weightage})$