91039)
-------	---

(Pages: 3)

Name	
Rog	No

THIRD SEMESTER M.A./M.Sc./M.Com. DEGREE (REGULAR) EXAMINATION, NOVEMBER 2020

(CBCSS)

Mathematics

MTH 3C 12—COMPLEX ANALYSIS

(2019 Admissions)

ne: Three Hours

Maximum: 30 Weightage

General Instructions

In cases where choices are provided, students can attend all questions in each Section / Part.

The minimum number of questions to be attended from the Section/Part shall remain same.

There will be an overall ceiling for each Section/Part that is equivalent to maximum weightage of the Section/Part.

Part A

Answer all questions.

Each question has weightage 1.

1. Explain the concept of radius of convergence of a power series? Find the radius of convergence of

the power series $\sum_{n=0}^{\infty} a^n z^n$.

- 2. Prove that $\sum a_n$ an converges if $\sum a_n$ converges absolutely.
- 3. Let $\gamma:[0,2\pi]\to \mathbb{C}$ and define $f(z)=\frac{1}{z}$; for $z\neq 0$ find $\int_{\gamma} f(z)\,dz$.
 - 4. Prove that a Mobius transformation is the composition of translation, dilation and the inversion.
 - 5. Identify the type of singularity of the function $\frac{\sin z}{z}$ at z = 0.

- 6. If $\sum a_n$ and $\sum b_n$ converges absolutely then prove that $\sum c_n$, where $c_n = \sum_{n=0}^n a_k b_{n-k}$ converges absolutely.
- 7. Show that $f(z) = \tan z$ is analytic in C except for simple poles at $z = \pi 2 + n\pi$, for each integer. Determine the singular part of f at each of these poles.
- 8. Define the residue of the function f(z) at the singularity a.

 $(8 \times 1 = 8 \text{ weightag})$

Part B

Answer any six questions.

Each question has weightage 2.

- If G is open and connected and f:G→C is differentiable with f'(z)=0 for all z∈G, then protested that f is constant.
- 10. Show that the function $f(z) = \sqrt{|xy|}$ is not analytic at the origin even though Cauchy-Riema equations are satisfied.
- 11. Find the image of $\{z : \text{Re}(z) = 0\}$ and $\{z : \text{Im } z = \pi/2\}$ under the exponential function.
- 12. State and prove Liouville's theorem.
- 13. Give the power series expansion of $\log z$ about z = i and find its radius of convergence.
- 14. Let γ be the closed polygon [1-i, 1+i, -1+i, -1-i, 1-i]. Find $\int_{\gamma}^{1} \frac{1}{z} dz$.
- 15. If z = a is an isolated singularity of f and $f(z) = \sum_{-\infty}^{\infty} a_n (z a)^n$ be the Laurent Expansion

ann (a; 0, R) then prove that z = a is a removable singularity if and only if $a_n = 0$ for $n \le -1$.

6. Evaluate
$$\int_{0}^{\infty} \frac{x^2 dx}{x^4 + x^2 + 1}$$

7. Find the Laurent series expansion of $e^{\frac{1}{z}}$.

 $(6 \times 2 = 12 \text{ weightage})$

Part C

Answer any two questions.

Each question has weightage 5.

- 8. (a) Let u and v be real-valued functions defined on a region G and suppose that u and v have continuous partial then prove that $f: G \to C$ defined by f(z) = u(z) + iv(z) is analytic if and only if it satisfies the C-R equations.
 - (b) Show that the real part of the function $z^{\frac{1}{2}}$ is always positive.
- 19. (i) Prove that a Mobius transformation carries circles into circles.
 - (ii) If z_1, z_2, z_3, z_4 are four distinct points in C_{∞} , then prove that their cross ratio is real if and only if all four points lie on a circle.
- 20. (a) State and prove general form of Cauchy's theorem.
- 21. State and prove the argument principle.

 $(2 \times 5 = 10 \text{ weightage})$