

n	31	20	5
v	$\mathbf{o}_{\mathbf{r}}$	ω	v

(Pages: 3)	Name	
	Reg No.	

THIRD SEMESTER M.Sc. DEGREE [REGULAR/SUPPLEMENTARY] EXAMINATION, NOVEMBER 2022

(CBCSS)

Physics

PHY 3E 05—EXPERIMENTAL TECHNIQUES

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

Section A

Answer all questions.

Each question carries weightage 1.

- Explain what happens in rotary oil pump if it stops working under vacuum conditions. Suggest a
 method to solve this problem.
- 2. Define with units throughput Q and pumping speed S of a vacuum pump. Plot the variation of S with pressure for a rotary.
- 3. Give two advantages of the spottering technique for thin film fabrication over the vacuum evaporation techniques.
- 4. What special technique is used in a tandem Van de Graaff accelerator to increase the available ion energy over that from a normal Van de Graaff accelerator?
- 5. Explain two disadvantages of a Cyclotron.
- Explain the origin of the background in the P₁ × E spectrum of a realistic sample.
- Briefly describe the method for determination of depth profile of impurity concentration in a sample.
- 8. Explain the difference between single crystal and powder diffraction using X-rays.

 $(8 \times 1 = 8 \text{ weightage})$

Turn over

Section B

Answer any **two** questions.

Each question carries weightage 5.

- 9. (a) Explain, using a diagram, the principle and working of a rotary oil pump.
 - (b) What is a gas ballast and its use?
- 10. (a) Explain why vacuum is required for thin films by the thermal evaporation techniq
 - (b) Describe the set up and its working for the above technique for thin film fabrication neat diagram for explanation.
- 11. (a) Explain the theory, construction and working of a modern synchrotron providing sketch.
 - (b) Mention two of its important applications.
- 12. (a) Illustrate the principle of the RBS technique for elemental analysis.
 - (b) With reference to a diagram of the experimental set up for the above technique, exthe same is used for a practical application.

 $(2 \times 5 = 10 \,\text{W})$

ડા

Section C

Answer any four questions. Each question carries weightage 3.

- 13. Calculate the pumping speed of a rotary oil pump to produce a vacuum level of 2×10^{-31} minutes inside a cubical pressure chamber of side 20 cm, starting from atmospheric pressure
- 14. In the measurement of the thin film thickness by the optical interference method, the maximum for a light of wavelength λ, is observed to coincide with the (n + 1)st order max a nearby wavelength λ₂, at normal incidence. Deduce the expression for the thickness of the refractive index μ of the film and the wave lengths.
- 15. It is required to obtain $^{32}_{16}S$ ions with an energy of 4 MeV per nucleon using a $tan^{de^{gl}}$ Graaff accelerator. The charge state of the ions selected is 10+, what should be $^{the^{-l}}$ potential? What will be the velocity of the ions? (1 amu = 931.4 MeV).

D 31205

- 16. The ⁷Li(p,α) reaction is being used to estimate the lithium content in a sample. What is the residual nucleus? Is there a threshold energy for this reaction? What is the value in the laboratory? The detector for the emitted particles is kept at 45° to the incident proton beam energy whose is 5 MeV above the threshold. Obtain the energy of the alphas detected. (Given the nuclide masses: ⁷Li:7.01601, ¹H = 1.007825, and ⁴He:4.002603, all in amu).
- 17. Polonium (Mass number = 209) is the only element known to crystallize in simple cubic structure. Its density is 9.196 g/cm³. Calculate the lattice constant a. Cu kα radiation of energy 8.04 Kev is used to study the crystal structure using X-ray diffraction. Obtain the angle at which first order reflection occurs from the set of planes parallel to one of its faces.
- 18. Deuterons are accelerated in a cyclotron. Determine the frequency of the accelerating voltage source given the strength of the magnetic field = 1.5 T and the mass of the particles = 3.3×10^{-27} kg. If the ions come out of the cyclotron with a kinetic energy of 16 MeV, calculate the cyclotron radius at which they leave the machine.
- 19. Considering each phase of the entire process for materials analysis by Neutron Activation technique, give a step by step derivation of the expression for the number of gamma rays detected by a HPGe detector per second in terms of the mass m of the particulars isotope in the sample, the beam current I and other relevant parameters of the experimental set up.

 $(4 \times 3 = 12 \text{ weightage})$