Name	
73	No

THIRD SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, NOVEMBER 2022

[November 2021 Session for SDE/Private Students]

(CBCSS)

Mathematics

MTH 3E 02—CRYPTOGRAPHY

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

Part A (Short Answer Questions)

Answer all questions.

Each question has weight 1.

- 1. Define Shift cipher. Encrypt the message "Number Theory" using Shift cipher with K=9.
- 2. Define synchronous stream cipher, Periodic stream cipher and non-synchronous stream cipher.
- Write short note on Cryptanalysis.
- Explain the term Perfect secrecy.
- 5. Define concave function and strictly concave function with example.
- Describe Product cryptosystem .Give an example.
- 7. Explain iterated block ciphers.
- 8. Define cryptographic hash functions.

 $(8 \times 1 = 8 \text{ weightage})$

Part B (Short Essay)

Answer any two questions from each unit.

Each question has weight 2.

Unit 1

3. Define Affine Cipher and involutory key. Prove that K = (a, b) is an involutory key in Affine Cipher over Z_n if and only if $a^{-1} \mod n = a$ and $b (a + 1) \equiv 0 \pmod{n}$.

Turn over

10. (a) Let π be the permutation of $\{1, 2, \dots, 8\}$. Compute π^{-1} where

- (b) Decrypt the following cipher text which was encrypted using above key π for a permitted permitted with m=8. TGEEMNELNNTDROEOAAHDOETCSHAEIRLM.
- 11. Explain Cryptanalysis of Vigenere Cipher.

Unit 2

- 12. Prove that a cryptosystem has perfect secrecy if and only if H(P/C) = H(P).
- 13. Let (P, C, K, E, D) be a cryptosystem. Then prove that H(K/C) = H(K) + H(P) H(C)
- 14. Explain the cryptosystem One-time Pad. Suppose y and y' are two cipher text elements tuples) in the one time Pad that are obtained by encrypting plaintexts x and x' respective the same key K. Then prove that x + x' = y + y' (mod2).

UNIT 3

- 15. Describe Substitution-Permutation Networks (SPN).
- 16. Explain Data Encryption Standard (DES).
- 17. Explain Nested Message Authentication Codes. How the security of a nested M4 ensured?

 $(6 \times 2 = 12 \text{ m})$

Part C (Essay)

Answer any **two** questions. Each question has weight 5.

- 18. (a) Define Hill Cipher. Explain how encryptions and decryptions are done in this Ci example and stating conditions on transformation matrix.
 - (b) Prove that the number of 2×2 invertible matrices over Z_p is $(p^2-1)(p^2-p)$, when
 - (c) If A is a matrix over Z_{26} such that $A^2=I$. Then prove that det $A\equiv \pm 1 \pmod{26}$
- 19. (a) Define entropy and conditional entropy. Prove that in any cryptosystem, H(K/C);
 - (b) Prove that $H(X, Y) \leq H(X) + H(Y)$ with equality if and only if X and Y are introduced random variables.

		- 1 in Linear cryptanalysis.
20.	(a)	Explain Linear cryptanalysis.

- (b) State and Prove the Piling-up lemma.
- (c) Compute the linear approximation table for the S-box given below:

compute the linear approximation table for the
$$z$$
 is z and z and z and z and z are computed the linear approximation table for the z and z are computed in z and z are computed in

- 21. (a) Compare between keyed and unkeyed hash functions. What are the three problems that should be addressed by a secure hash function?
 - (b) Explain Random Oracle Model Hash functions.

 $(2 \times 5 = 10 \text{ weightage})$

