

| $\mathbf{r}$ | 0  | 1 | 1 | 7 | 7 |
|--------------|----|---|---|---|---|
| D            | Ú. | T | T | ı | ı |

(Pages: 3)

Name.....

Reg. No.....

# THIRD SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, NOVEMBER 2022

(CBCSS)

(November 2021 Session for SDE/Private Students)

Mathematics

## MTH3C11—MULTIVARIABLE CALCULUS AND GEOMETRY

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

#### Part A

Answer all questions.

Each question has weightage 1.

- 1. Define dimension of a vector space. Show that dim  $\mathbb{R}^n = n$ .
- 2. Show that  $\det[A]_1 = -\det[A]$ , if  $[A]_1$  is an  $n \times n$  matrices obtained from [A] by interchanging two columns.
- 3. Define a parametrized curve. Find the parametrization for the level curve  $y^2 x^2 = 1$ .
- 4. Find the signed curvature of the catenary  $\gamma(t) = (t, \cosh t)$ .
- 5. Find the equation of the tangent plane of the surface patch:

 $\sigma(r,\theta) = (r \cosh\theta, r \sinh\theta, r^2)$  at the point (1, 0, 1).

- 6. Show that  $x^2 + y^2 + z^4 = 1$  is a smooth surfaces.
- 7. Calculate the first fundamental forms of the surface :  $\sigma(u, v) = (\sinh u \sinh v, \sinh u \cosh v, \sinh u).$
- 8. Compute the second fundamental form of the elliptic paraboloid  $\sigma(u, v) = (u, v, u^2 + v^2)$ .

 $(8 \times 1 = 8 \text{ weightage})$ 



2

D 31177

#### Part B

Answer six questions choosing two from each unit. Each question has weightage 2.

#### Unit I

- 9. Show that if a vector space X is spanned by a set of r vectors, then dim  $X \le r$ .
- 10. Show that, if f maps an open set  $E \subset \mathbb{R}^n$  into  $\mathbb{R}^m$ , then  $f \in \mathcal{C}^1(E)$  if and only if the partial derivatives  $\mathrm{D}f_i$  exist and are continuous on  $\mathrm{E}$  for  $1 \leq i \leq m, 1 \leq j \leq n$ .
- 11. If [A] and [B] are n by n matrices, then show that det([B][A]) = det[B]det[A].

#### Unit II

- 12. Show that a parametrized curve has a unit-speed reparametrization if and only if it is regular.
- 13. Let  $\gamma$  be a regular curve in  $\mathbb{R}^3$  with nowhere vanishing curvature. Then, show that the image of  $\gamma$  is contained in a plane if and only if the torsion  $\tau$  is zero at every point of the curve.
- 14. Calculate the transition map  $\Phi$  between the two surface patches for the Mobius band. Show that it is defined on the union of two disjoint rectangles in  $\mathbb{R}^2$ , and that the determinant of the Jacobian matrix of  $\Phi$  is equal to +1 on one of the rectangles and to -1 on the other.

#### Unit III

- 15. Prove that the area of a surface patch is unchanged by reparametrization.
- 16. Show that the normal curvature of any curve on a sphere of radius r is  $\pm 1/r$ .
- 17. Calculate the principal curvatures of the helicoid  $\sigma(u,v) = (v\cos u, v\sin u, \lambda u)$ .

 $(6 \times 2 = 12 \text{ weightage})$ 

### Part C

Answer two questions,

Each question has weightage 5.

- 18. State and prove the Implicit function theorem,
- 19. (a) Show that the transition maps of a smooth surface are smooth.

D 31177

(b) Let U and  $\tilde{U}$  be open subsets of  $\mathbb{R}^2$  and let  $\sigma: U \to \mathbb{R}^3$  be a regular surface patch. Let  $\Phi: \tilde{U} \to U$  be a bijective smooth map with smooth inverse map  $\Phi^{-1}: U \to \tilde{U}$ . Then show that

3

- 20. Let S be a subset of  $\mathbb{R}^3$  with the following property: for each point  $p \in S$ , there is an open subset W of  $\mathbb{R}^3$  containing p and a smooth function  $f: \mathbb{W} \to \mathbb{R}$  such that:
  - (i)  $S \cap W = \{(x, y, z) \in W \mid f(x, y, z) = 0\};$
  - (ii) The gradient  $\nabla f$  of f does not vanish at p.

 $\tilde{\sigma} = \sigma \circ \Phi : \tilde{U} \to \mathbb{R}^3$  is a regular surface patch.

Then, show that S is a smooth surface.

21. Let S be a connected surface of which every point is an umbilic. Then, prove that S is an open subset of a plane or a sphere.

 $(2 \times 5 = 10 \text{ weightage})$