

D 31178

(Pages: 3)

Name.....

Reg. No.....

THIRD SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, NOVEMBER 2022

[November 2021 session for SDE/Private Students]

(CBCSS)

Mathematics

MTH 3C 12—COMPLEX ANALYSIS

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

Part A

Answer all questions. Each question has weightage 1.

- 1. If the function f defined on a domain G is differentiable at a point a in G then prove that f is continuous at a.
- 2. Prove that $|\exp z| = \exp(\operatorname{Re} z)$.
- 3. Prove that $u(x, y) = \log(x^2 + y^2)$ is harmonic on $G = C \{0\}$.
- 4. Let γ be the closed polygon [1-i, 1+i, -1+i, -1-i, 1-i]. Find $\int_{z} \frac{1}{z+2} dz$.
- Establish Cauchy's Estimate.
- 6. Evaluate $\int_{C} \frac{2z^2 + z}{z^2 1} dz$ where C is |z| = 1.
- 7. If G is an open set which is a-star shaped and if γ_0 is a curve which is constantly equal to a then prove that every closed rectifiable curve in G is homo topic to γ_0 .
- 8. Find the singularities of $f(z) = \frac{\sin z}{z}$ and identify the type of singularities.

 $(8 \times 1 = 8 \text{ weightage})$

Turn over

D 311

Part B

Answer any six questions choosing two from each unit. Each question has weightage 2.

UNIT I

- 9. Prove that $f(z) = |z|^2 = x^2 + y^2$ has a derivative only at the origin.
- 10. If u is a real-valued function defined on a region then prove that u has a harmonic conjugate i is harmonic.
- 11. Define Cross ratio. Prove that cross ratio remains invarient under Mobius transformation.

Unit II

- 12. Let $\gamma:[a,b]\to \mathbb{R}$ be non-decreasing. Show that γ is of bounded variation and $V(\gamma)=\gamma(b)-\gamma(b)$
- 13. If $\gamma:[0,1]\to \mathbb{C}$ is a closed rectifiable curve and $\alpha\notin\{\gamma\}$ then prove that $\frac{1}{2\pi i}\int_{\gamma}\frac{dz}{z-\alpha}$ is an integ
- 14. State and prove fundamental theorem of algebra.

Unit III

- Find the image of $\{z : \text{Re } z < 0, \big| \text{Im } z \big| < \pi \}$ under the exponential function.
- 16. If f has an essential singularity at z = a then prove that for every $\delta > 0$; $f[ann(a; 0; \delta)] = 0$
- 17. Prove that the function $f:[a,b] \to \mathbb{R}$ is convex iff the set $A = \{(x,y) : a \le x \le b \text{ and } f(x) \le y \}$ convex.

 $(6 \times 2 = 12 \text{ weight})$

3

D 31178

Part C

Answer any two questions.

Each question has weightage 5.

- 18. If for a given power series $\sum_{n=0}^{\infty} a_n (z-a)^n$ the number $R, 0 \le R \le \infty$ is defined by
 - $\frac{1}{R} = \limsup |\alpha_n|^{\frac{1}{n}}$ then prove the following:
 - (a) If |z-a| < R, the series converges absolutely.
 - (b) If |z-a| > R, the terms of the series become unbounded and so the series diverges.
 - (c) If $0 < r < \mathbb{R}$ then the series converges uniformly on $\{z : |z| \le r\}$.
- State and prove open mapping theorem.
- 20. Show that if $f: \mathbb{C} \to \mathbb{C}$ is a continuous function such that f is analytic off [-1,1] then f is an entire function.
- 21. (i) If f is analytic in a region G and a is a point in G with $|f(a)| \ge |f(z)|$ for all z in G then prove that f must be a constant function.
 - (ii) If G is a bounded open set in C and suppose f is a continuous function on G^- which is analytic in G then prove that $\max \left\{ \left| f(z) \right| : z \in G^- \right\} = \max \left\{ \left| f(z) \right| : z \in \partial G \right\}$.

 $(2 \times 5 = 10 \text{ weightage})$