D	11	1	ı	H	7
---	----	---	---	---	---

(Pages + 2)

Reg. Nummeron

THIRD SEMESTER M.Sc. (CHCSS) REGULAR/SUPPLEMENTARY DEGREE EXAMINATION, NOVEMBER 2024

Mathematics

MTH 3C 12-COMPLEX ANALYSIS

(2019 Admission onwards)

Time : Three Hours

Maximum: 30 Weightage

Part A

Answer all questions. Each question has weightage 1.

- 1. Which subsets of the unit sphere S correspond to the real and imaginary axes in the complex
- 2. Find the radius of convergence of the power series $\sum_{n=0}^{\infty}a^{n^2}z^n, a \in \mathbb{C}$.
- 3. Show that $\lim_{n \to \infty} \frac{1}{n^n} = 1$.
- 4. Give the power series expansion of \sqrt{z} about z = 1.
- 5. Evaluate $\int \frac{e^{iz}}{z-a} dz$, where $\gamma(t) = a + re^{it}$, $0 \le t \le 2\pi$.
- 6. Determine the type of singularity of $f(z) = \frac{\sin z}{z}$ at z = 0.
- 7. Find the number of zeroes of $z^7 4z^3 + z 1$ enclosed by |z| = 1.
- 8. Show that a function $f:[a,b] \to \mathbb{R}$ is convex iff the set $A = \{(x,y): a \le x \le b \text{ and } f(x) \le y\}$ is convex.

 $(8 \times 1 = 8 \text{ weightage})$

Part B

Answer any two questions from each unit. Each question has weightage 2.

UNIT 1

9. Let $f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n$ have radius of convergence R > 0. Then show that for each $k \ge 1$ the series $\sum_{n=k}^{\infty} n(n-1)...(n-k+1)a_n(z-a)^{n-k}$ has radius of convergence R.

Turn over

549827

- 10. Suppose $f:G\to C$ is analytic and that G is connected. Show that if f(x) is $c_{ini}|_{G_{in}}$ then f is constant
- 11. Let $\gamma[a,b] \to \mathbb{R}$ be non-decreasing. Show that γ is of bounded variation and $\psi_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}}}}}(b)}}$

Unit 2

- 12. Let $f: G \to \mathbb{C}$ be analytic and suppose $B(a;r) \subset G(r>0)$. Show that if $\gamma(t) = a \circ r_{p^{\prime\prime}} f_{r+1}$ then $f(x) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{f(w)}{w-z} dw$ for |z-u| < r,
- 13. Let $\gamma(t) = 1 + e^{it}$ for $0 \le t \le 2\pi$. Find $\int_{\gamma} \left(\frac{z}{z-1}\right)^n dz$ for all positive integer n.
- 14. Suppose that $f: G \to \mathbb{C}$ is analytic and one-one; show that $f'(z) \neq 0$ for any z in G

Unit 3

- 15. State and prove Casorati-Weierstrass theorem.
- 16. State and prove Maximum Modulus Theorem.
- 17. Let a < b and let G be the vertical strip $\{x + iy : a < x < b\}$. Suppose $f : G^- \to \mathbb{C}$ is continuous f is analytic in G and $|f(z)| \le 1$ for z on ∂G . Then show that $|f(z)| \le 1$ for all z in G.

$(6 \times 2 = 12 \text{ weightage})$

Part C

Answer any two questions. Each question has weightage 5.

- 18. (a) Let G be either the whole plane $\mathbb C$ or some open disk. Show that if $u:G\to\mathbb R$ is harmonic function than u has a harmonic conjugate.
 - (b) Find the fixed points of a dilation, a translation and the inversion on \mathbb{C}_{\pm} .
- 19. (a) Let $Sz = \frac{\alpha z + b}{cz + d}$ and $Sz = \frac{\alpha z + \beta}{\gamma z + \delta}$. Show that S = T iff there is a non-zero complex number λ such that $\alpha = \lambda \alpha$, $\beta = \lambda b$, $\gamma = \lambda c$, $\delta = \lambda d$.
 - (b) Find $\int_{z}^{1/2} dz$ where γ is the upper half of the unit circle from + 1 to 1.
- 20. State and prove Goursat's Theorem.
- 21. Evaluate $\int_{0}^{\infty} \frac{x^{-c}}{1+x} dx$, when 0 < c < 1.

 $(2 \times 5 = 10 \text{ weightage})$