111100

(Pages (4)

Namenamanamanaman

Reg. Nonnannannannannan

THIRD SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, NOVEMBER 2024

(CBCSS)

Mathematics

MTH3C11-MULTIVARIABLE CALCULUS AND GEOMETRY

(2019 Admission onwards)

ime: Three Hours

Maximum: 30 Weightage

Part A (Short Answer Type Questions)

Answer all questions.

Each question carries a weightage 1.

- 1. Define linearly independent set of vectors. Illustrate with an example.
- 2. Give an example of a linear transformation between two vector spaces and find its derivative.
- 3. Let E be an open set in \mathbb{R}^n , and $f: E \to \mathbb{R}^m$. When we say that f is continuously differentiable in E.
- 4. Define parametrized curve in \mathbb{R}^n . Give a parametrization of the astroid $x^{2/3} + y^{2/3} = 1$.
- 5. Compute the curvature of the curve:

$$\gamma(t) = \left(\frac{4}{5}\cos t, 1 - \sin t, -\frac{3}{5}\cos t\right).$$

- 6. Describe briefly : Stereographic projection from S^2 to the plane.
- 7. Let $\sigma(u,v)$ be a surface patch with standard unit normal N(u,v). Then prove that $N_u \cdot \sigma_u = -L$.
- 8. Prove that the second fundamental form of a plane is zero.

 $(8 \times 1 = 8 \text{ weightage})$

Turn over

part it (Paragraph Type Questions)

theory one two questions from each module Kach questian carries a weightage 2

test the a positive integer. If a vector space X is spanned by a set of r vectors, then tr_{n_k}

- If X is a complete metric space, and if φ is a contraction of X into X, then prove that $\varphi(x) = x$.
- 11. If $A \in L\left(\mathbb{R}^{n+m}, \mathbb{R}^n\right)$ and if A_x is invertible, then prove that there corresponds to every k.

- 12. If the tangent vector of a parametrized curve is constant, then prove that the image of the tangent vector of a parametrized curve is constant, then prove that the image of the tangent vector of a parametrized curve is constant, then prove that the image of the tangent vector of a parametrized curve is constant, then prove that the image of the tangent vector of a parametrized curve is constant, then prove that the image of the tangent vector of a parametrized curve is constant, then prove that the image of the tangent vector of a parametrized curve is constant, then prove that the image of the tangent vector of a parametrized curve is constant, then prove that the image of the tangent vector of a parametrized curve is constant.
- 13. Let $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ be a unit-speed curve, let $s_0\in(\alpha,\beta)$ and let φ_0 be such that

Then prove that there is a unique smooth function $\phi:(\alpha,\beta)\to\mathbb{R}$ such that $\phi(s_0)=\phi_0$ and the equation

$$\dot{\gamma}(s) = (\cos \varphi(s), \sin \varphi(s)).$$

holds for all $s \in (\alpha, \beta)$.

14. Let $f: S_1 \to S_2$ be a diffeomorphism. If σ_1 is an allowable surface patch on S_1 , then prove $f\circ\sigma_1$ is an allowable surface patch on S_2 .

Module III

15. Prove that

$$\left\|\,\sigma_{u}\times\sigma_{v}\,\right\|=\left(\mathrm{EG}-\mathrm{F}^{2}\right)^{1/2}.$$