D	51	31	0

(Pages:2)

1900	GARLE,	6000	
145	ıme		*****
4499.	W6999.	1657/A.	
Re	es 186 200		
re	B. 1337	**************	*****

THIRD SEMESTER M.Sc. (CBCSS) [REGULAR/SUPPLEMENTARY] DEGREE EXAMINATION, NOVEMBER 2023

Mathematics

MTH 3C 13—FUNCTIONAL ANALYSIS

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

Part A

Answer all questions.

Each questions carries a weightage of 1.

- 1. Is norm a linear mapping? Justify your answer.
- 2. Find the intersection of the unit ball in C[0, 1] with the subspace span $\{t\}$, where C[0, 1] denotes the set of all continuous functions on [0, 1] equipped with the supremum norm.
- 3. Show that the inner product $\langle x, y \rangle$ is a continuous function with respect to both the variables.
- 4. Prove that for any two subspaces L_1 and L_2 of a Hilbert space H, $\left(L_1 + L_2\right)^{\perp} = L_1^{\perp} \cap L_2^{\perp}$.
- 5. State the Hahn Banach Extension theorem.
- 6. If A is a bounded operator on a normed space, then show that the set $\ker A = \{x : Ax = 0\}$ is a closed subspace.
- 7. State the Banach open map theorem.
- 8. If A and B are invertible operators prove that AB is also invertible.

 $(8 \times 1 = 8 \text{ weightage})$

Part B

Answer any six questions choosing two from each unit. Each question carries a weightage of 2.

Unit I

- 9. If X_0 is a closed subspace of X, then show that the quotient space X/X_0 can be equipped with a norm given by the formula $||x|| = \inf\{||x-y||, y \in X_0\}$ for $|x| \in X/X_0$.
- 10. For every sequence of scalars $a=(a_i)$ and $b=(b_i)$ and for $1 \le p \le \infty$ prove that $\|a+b\|_p \le \|a\|_p + \|b\|_p$.
- 11. Prove that if $p \ge q \ge 1$, then the sequence space $l_q \subset l_p$.

Unit II

- State and prove the Bessel's inequality.
- Prove that if $\{f_i\}$ is a complete system in a Hilbert space H and $x \perp f_i$, then x = 0.
- 14. Prove that f is a bounded functional if and only if f is a continuous functional.

Unit III

- Prove that any two norms on a finite dimensional space are equivalent.
- 16. Show that the shift operator in l_2 defined by $Tx = (0, a_1, a_2, ..., a_n...)$ for $a_n \in l_2$ satisfies ||Tx|| = ||x|| for every x and ||T|| = 1.
- 17. Let H be a Hilbert space and $A: H \mapsto H$ be a linear operator. Prove that A is compact if and only if its adjoint A* is compact.

 $(6 \times 2 = 12 \text{ weightage})$

Part C

Answer any two questions. Each question carries a weightage of 5.

- 18. Prove that the sequence space $l_p, 1 \le p < \infty$ is a complete normed space.
- 19. Prove that any two separable infinite dimensional Hilbert spaces \mathbf{H}_1 and \mathbf{H}_2 are isometrically equivalent.
- 20. Let M be a closed convex sets in a Hilbert space H. Let $\rho(x, M)$ be the distance of x to the set M. Prove that there exists a unique $y \in M$ such that $\rho(x, M) = ||x - y||$.
- 21. Prove that for any normed space X, the dual space X* is complete.

 $(2 \times 5 = 10 \text{ weightage})$