D	51	3	0	9

(Pages: 2)

Na	me	•••••
* ***	*************	*****************
	7 (4) (1) (2) (4)	1. 4. 1. 1.
	5 Table 2 2 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2000 000

Reg. No.....

THIRD SEMESTER M.Sc. (CBCSS) REGULAR/SUPPLEMENTARY DEGREE EXAMINATION, NOVEMBER 2023

Mathematics

MTH 3C 12—COMPLEX ANALYSIS

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

Part A

Answer all questions.

Each question carries a weightage of 1.

- Describe stereographic projection.
- 2. Find the radius of convergence of the power series $\sum_{n=0}^{\infty} k^n z^{n} k$ an non-zero integer.
- 3. Show that the real part of the function \sqrt{z} is always positive.
- 4. Give the power series expansion of log (z) about z = i.
- 5. Evaluate $\int_{\gamma} \frac{\sin z}{z^3} dz$, where $\gamma(t) = e^{it}$, $0 \le t \le 2\pi$.
- 6. Determine the type of singularity of $f(z) = z \sin\left(\frac{1}{z}\right)$ at z = 0.
- 7. Find the number of zeroes of $z^7 4z^3 + z 1$ enclosed by |z| = 1.
- 8. Show that a function $f:[a,b] \to \mathbb{R}$ is convex iff the set $A = \{(x,y) : a \le x \le b \text{ and } f(x) \le y\}$ is convex.

 $(8 \times 1 = 8 \text{ weightage})$

Part B

Answer any **two** questions from each unit, Each question carries a weightage of 2.

Unit 1

- 9. Show that if G is open and connected and $f: G \to \mathbb{C}$ is differentiable with f'(z) = 0 for all z in G, then f is constant.
- 10. Prove that there is no branch of the logarithm defined on $G = \mathbb{C} \{O\}$.
- 11. State and prove symmetry principle.

Unit 2

- 12. Show that if f be analytic in B(a; R) then $f(x) = \sum_{n=0}^{\infty} a_n (z-a)^n$ for |z-a| < R, where $a_m = \frac{1}{n!} f^{(n)}(a)$ and this series has radius of convergence $\geq R$.
- 13. Let $U:\mathbb{C}\to\mathbb{R}$ be a harmonic function such that $U(z)\geq 0$ for all z in C; prove that U_{i_S} constant.
- 14. Suppose that $f: G \to \mathbb{C}$ is analytic and one-one; show that $f'(z) \neq 0$ for any z in G.

Unit 3

- 15. State and prove residue theorem.
- 16. State and prove Rouche's Theorem.
- 17. State and prove Schwarz's lemma.

 $(6 \times 2 = 12 \text{ weightage})$

Part C

Answer any **two** questions. Each question carries a weightage of 5.

- 18. Let $f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n$ have radius of convergence R > 0. Then:
 - (a) For each $k \ge 1$ the series $\sum_{n=k}^{\infty} n(n-1)...(n-k+1)a_n(z-a)^{n-k}$ has radius
 - (b) The function f is infinitely differentiable on B(a, R) and, furthermore, $f^k(z)$ is g^{iv} by $\sum_{n=k}^{\infty} n(n-1)...(n-k+1)a_n(z-\alpha)^{n-k}$ for all $k \ge 1$ and $|z-\alpha| < R$.
 - (c) For $k \ge 1$, $a_n = \frac{1}{n!} f^n(a)$.
- 19. State and prove analogue of the Fundamental Theorem of Calculus for line integrals. Show that if γ_0 and γ_1 are two closed rectifiable curves in G and γ_0 γ_1 then $\int_{\gamma_0} f = \int_{\gamma_1} f$
- 21. Evaluate $\int_{0}^{\infty} \frac{\log x}{1+x^2} dx$.