\Box	83	0	6	6	
	$^{\circ}$	•	•	v	

(Pa	ges.	•	2)
	$a_1 \leftarrow a_2$	•	•,,,

Name

SECOND SEMESTER M.A./M.Sc./M.Com. DEGREE EXAMINATION JUNE 2020

(CBCSS)

Mathematics

MT 2C 10-OPERATIONS RESEARCH

(2019 Admissions)

lime: Three Hours

Maximum: 30 Weightage

Part A

Answer all the questions.

Each question has weightage 1.

- 1. Write an example of a convex function.
- 2. Write the mathematical form of a general linear programming problem.
- 3. When is a mathematical programming problem called a convex programming problem? Explain.
- 4. When do we say that a transportation problem is balanced? Explain.
- 5. Define chain and path in graphs. Prove that path is a chain, but every chain is not a path.
- 6. For any feasible flow $\{x_i\}$, i=1,2,...,m, in the graph, prove that the flow x_0 in the return arc is not greater than the capacity of any cut in the graph.
- 7. What is meant by matrix game? Describe.
- 8. Describe the notion of dominance in Game theory.

 $(8 \times 1 = 8 \text{ weightage})$

Part B

Answer any two questions from each unit.

Each question has weightage 2.

Unit I

Let X ∈ E_n and let f (X) = X'AX be a quadratic form. If f (X) is positive semidefinite, prove that f (X) is a convex function.

Turn over

- 10. Define the dual of a linear programming problem. Prove that dual of the dual is the primal problem.
- 11. Solve graphically the linear programming problem:

er.

£.,

110

Minimize $z = x_1 + 3x_2$ subject to $x_1 + x_2 \ge 3$, $-x_1 + x_2 \le 2$, $x_1 - 2x_2 \le 2$, $x_1 \ge 0$, $x_2 \ge 0$.

UNIT II

- 12. If the primal problem is feasible, prove that it has an unbounded optimum if and only if the dual has no feasible solution, and vice versa.
- 13. Solve the following problem using dual simplex method:

Minimize $x_1 + 2x_2 + 2x_3$ subject to $4x_1 - 5x_2 + 7x_3 \le 8$, $2x_1 - 4x_2 + 2x_3 \ge 2$, $x_1 - 3x_2 + 2x_3 \le 2$, $x_1 \ge 0$, $x_2 \ge 0$, $x_3 \ge 0$.

14. Define transportation matrix. Write an example for a transportation matrix.

Unit III

- 15. Prove that a tree can have at the most one centre.
- 16. Describe the branch and bound method in integer programming.
- 17. Write the formulation of rectangular game as a linear programming problem.

 $(6 \times 2 = 12 \text{ weightage})$

Part C

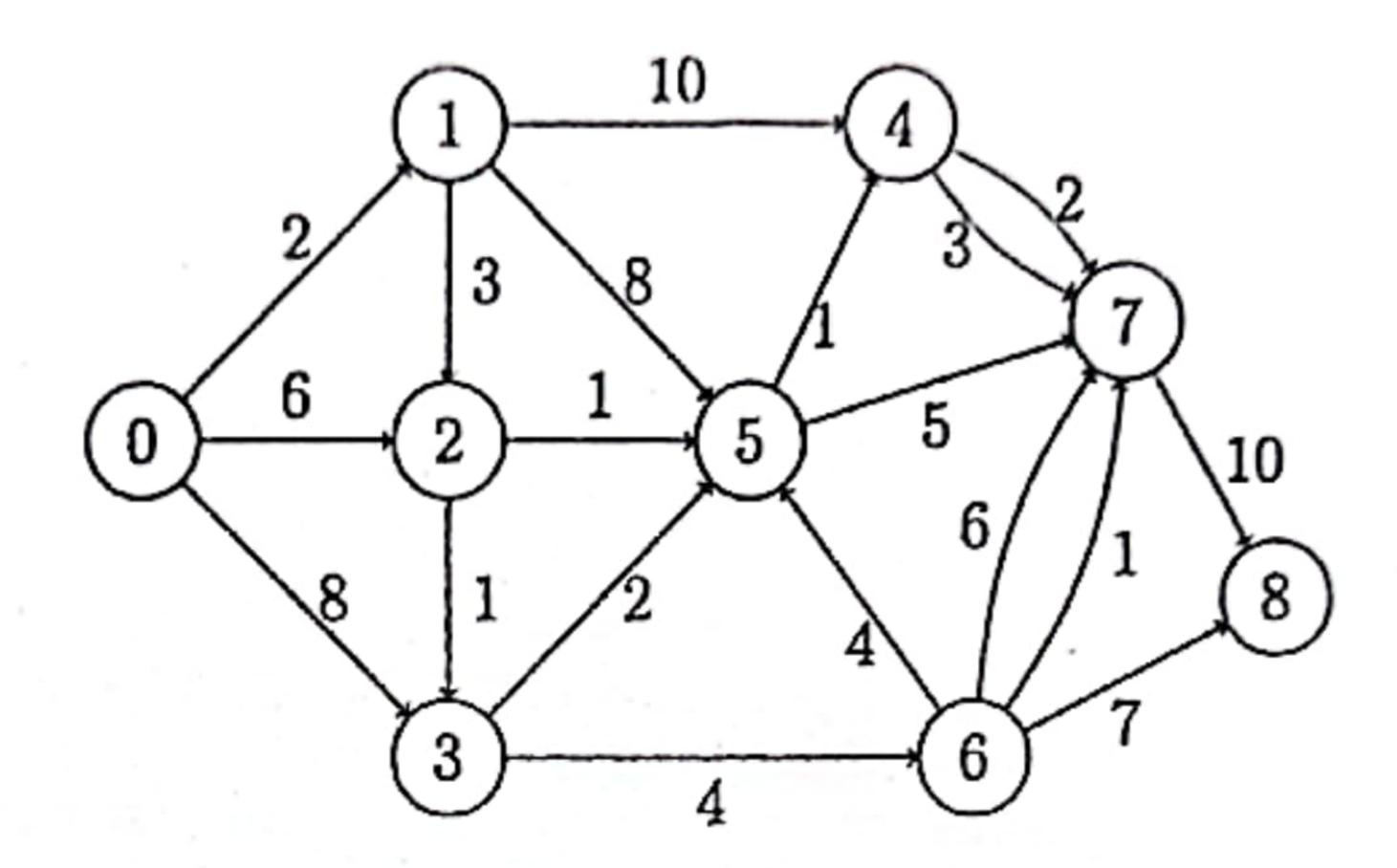
Answer any **two** questions. Each question has weightage 5.

- 18. (a) Let $X \in E_n$ and $g_i(X)$, i = 1, 2, ..., m be convex functions in E_n . Let $S \subseteq E_n$ be the set of points satisfying the constraints $g_i(X) \le 0$, i = 1, 2, ..., m. Then prove that S is a convex set.
 - (b) Use simplex method to maximize: $3x_1 + 2x_2 + 3x_3$ subject to the constraints $x_1 + x_2 + x_3 \le 9$, $2x_1 + 3x_2 + 5x_3 \le 30$, $2x_1 x_2 x_3 \le 8$, $x_1, x_2, x_3 \ge 0$.
- 19. (a) Discuss the Caterer problem in operations research.
 - (b) Solve that the transportation problem for minimum cost with the cost co-efficients, demands and supplies as given in the following table. Obtain three optimal solutions.

20. (a) Solve the following integer linear programming problem:

Maximize
$$\phi(X) = 3x_1 + 4x_2$$
; subject to $2x_1 + 4x_2 \le 13$, $-2x_1 + x_2 \le 2$, $2x_1 + 2x_2 \ge 1$, $6x_1 - 4x_2 \le 15$, $x_1, x_2 \ge 0$, x_1 and x_2 are integers.

(b) Find the minimum path from v_0 to v_8 in the following graph in which the number along the directed arcs donote its length.



Let f(X, Y) be such that both $\max_X \min_Y f(X, Y)$ and $\min_Y \max_X f(X, Y)$ exist. Then prove that the necessary and sufficient condition for the existence of a saddle point (X_0, Y_0) of f(X, Y) is that $f(X_0, Y_0) = \max_X \min_Y f(X, Y) = \min_Y \max_X f(X, Y)$.

 $(2 \times 5 = 10 \text{ weightage})$