5	2	6	5	7	9

102183

(Pages: 2)

Name.....

Reg. No.....

SECOND SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, APRIL 2024

(CBCSS)

Physics

PHY 2C 05—QUANTUM MECHANICS—I

(2019 Admission onwards)

ime: Three Hours

Maximum: 30 Weightage

Section A

8 Short questions answerable within 7.5 minutes.

Answer all questions, each question carries 1 weightage.

- 1. Define Unitary operators. What is the importance of unitary operators?
- 2. What are projection operators?
- 3. How can you differentiate between a symmetric wave functions and antisymmetric wave functions?
- 4. Calculate the commutator $[J_z^2, J_y]$.
- 5. Discuss the Pauli Exclusion Principle.
- 6. Explain the properties of Hilbert Space.
- 7. What is the principle of indistinguishability of identical particles.
- 8. Explain the important features of Schrödinger picture and Heisenberg picture.

 $(8 \times 1 = 8 \text{ weightage})$

Turn over

Section B

4 essay questions answerable within 30 minutes. Answer any two questions, each question carries 5 weightage.

- 9. Derive the generalized uncertainty relation. Deduce the three basic uncertainty recanonically conjugate operators
- 10. Explain the Sequential Stern-Gerlach experiment and describe experimental conclusion lead to the fundamentals of quantum mechanics.
- What are Clebsch-Gordan co-efficients? Deduce recursion relations for Clebsch-Gordan $\ensuremath{\mathsf{Gordan}}\xspace_{\mathbb{Q}}$
- 12. Describe Schrödinger equation for central potentials and hence describe Hydrogen at $(2 \times 5 = 10)$

Section C

7 problems answerable within 15 minutes. Answer any four questions, each question carries 3 weightage.

- 13. What is time evolution operator? Obtain the Schrödinger equation for the time evolution
- 14. Explain the Interaction picture. Obtain the equation of motion.
- 15. How do you represent position operator in momentum basis and the momentum operator basis
- 16. Evaluate the x-p uncertainty product $\langle (\Delta x)^2 \rangle \langle (\Delta p)^2 \rangle$ for a one-dimensional particle. between two rigid walls,

$$V = \begin{cases} 0 \text{ for } 0 < x < a \\ \infty \text{ otherwise} \end{cases}.$$

- 17. Show that the law of conservation of angular momentum is a consequence of the rotational of the system.
- 18. For Pauli's matrices, prove that $\left[\sigma_x, \sigma_y\right] = 2i\sigma_z$.
- 19. State and prove the Jacobi identity.