D 102170

(Pages: 4)

Name.....

Reg. No.....

SECOND SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, APRIL 2024

(CBCSS)

Mathematics

MTH 2C 07—REAL ANALYSIS—II

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

Part A

Answer all questions.

Each question has weightage 1.

- 1. Verify whether $\{\emptyset, [0,1], \mathbb{R}\}$ is a σ -algebra over \mathbb{R} .
- 2. Let $E = \bigcup_n E_n$ where $E_n = \left(\frac{1}{n}, 3 \frac{1}{n}\right)$. Find m(E).
- 3. Verify whether f(x) = 2x is a Lebesgue measurable function on \mathbb{R}
- 4. Consider

$$f(x) = \begin{cases} 0 & \text{if } 0 \le x < 1 \\ 1 & \text{if } 1 \le x \le 2 \end{cases}.$$

Verify whether f(x) is a simple function.

5. Let f(x) in [0,1] be defined by

$$f(x) = \begin{cases} 1 & \text{if } x \text{ is rational} \\ 0 & \text{otherwise} \end{cases}$$

Find $\int_{E} f$ where E is the set of all rationals in [0, 1].

Turn over

5

D

6. Consider the family of functions

 $F = \{\chi_A : A \text{ is a measurable subset of } [0, 1] \}.$

Verify whether F is uniformly integrable.

7. Let $(q_n)_{n=1}^{\infty}$ be an enumeration of the rationals in (0,1) and let

$$f(x) = \sum_{n: q_n \le x} \frac{1}{2^n}.$$

for 0 < x < 1. Show that f is an increasing function on (0, 1).

8. Verify whether $f(x) = \sqrt{x}$ is absolutely continuous on [0, 1].

 $(8 \times 1 = 8\pi)$

Part B

Answer any two questions from each module. Each question has weightage 2.

MODULE I

- 9. Let m^* be the Lebesgue measure on $\mathbb R$. Show that for subsets A, $\mathbb R$ $A \subseteq B \text{ then } m^*(A) \le m^*(B).$
- 10. Show that if A and B are disjoint measurable subsets of $\mathbb R$ then

$$m*(A \cup B) = m*(A) + m*(B).$$

11. Show that Lebesgue measure is translation invariant.

Module II

12. Let ϕ and ψ be simple functions on a measurable set E of finite measure. Show this

$$\int_{E} \left(\phi + \psi\right) = \int_{E} \phi + \int_{E} \psi,$$

13. Let f be a bounded measurable function on a set E of finite measure. Let $E = A \cup B$ where A and B are disjoint measurable subsets of E. Show that

$$\int_{\mathbf{E}} f = \int_{\mathbf{A}} f + \int_{\mathbf{B}} f.$$

14. Let a sequence (f_n) converge to f in measure on E. Show that there exists a subsequence (f_{nk}) converging pointwise to f a.e. on E.

MODULE III

- 15. Let f be a function of bounded variation on [0, 1]. Show that f is the difference of two increasing functions.
 - Show that if f is a Lipschitz function on [0,1], then it is absolutely continuous on [0,1].
- Show that every convergent sequence in a normed linear space is a Cauchy sequence.

 $(6 \times 2 = 12 \text{ weightage})$

Part C

Answer any **two** questions. Each question has weightage 5.

- 18. (a) Define Lebesgue outer measure of a subset A of the reals.
 - (b) Show that m*([a,b]) = b a where [a,b] is a closed interval
 - (c) Show that m * ((a, b)) = b a where (a, b) is an open interval
- 19. (a) Define Lebesgue measurable function.
 - (b) Show that every continuous function defined on a measurable subset of $\mathbb R$ is a measurable function.
 - (c) Show that if f is measurable and if g = f a.e. then g is measurable.

- 20. (a) Define tight family of functions.
 - (b) Let (f_n) be a sequence of functions defined on a measurable set E that is uniform and tight over E. Suppose that $f_n \to f$ pointwise a.e. on E. Show that:
 - (i) f is integrable over E.
 - (ii) $\int_{\mathbf{E}} f = \lim_{n \to \infty} \int_{\mathbf{E}} f_n.$
- 21. (a) Define the space $L^{1}\left(E\right)$ for a measurable set E.
 - (b) Show that $||f||_1 = \int_{\mathbb{E}} |f| \text{ is a norm on } L^1(\mathbb{E}).$
 - (c) Show that $L^{1}(E)$ is a Banach space.