10	21	69
	10	1021

(Pages: 3)

Name.....

Reg. No.....

SECOND SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, APRIL 2024

(CBCSS)

Mathematics

MTH 2C 06—ALGEBRA—II

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

Part A

Answer all questions.

Each question has weightage 1.

- 1. Find a maximal ideal of the ring \mathbb{Z}_6 of integers mod 6.
- 2. Verify whether $\mathbb{Z} \times \{0\}$ is a prime ideal of $\mathbb{Z} \times \mathbb{Z}$.
- 3. Verify whether $\sqrt{2}$ is algebraic over the field $\mathbb Q$ of rationals.
- 4. Verify whether there exists a field of 10 elements.
- 5. Find all automorphisms of the field $\mathbb C$ of complex numbers leaving all reals fixed.
- 6. Verify whether $\mathbb{Q}(\sqrt[3]{2})$ is a splitting field over \mathbb{Q} .
- 7. Verify whether $y_1^2 + y_1y_2 + y_2^2$ is a symmetric function in y_1, y_2 .
- Describe extension by radicals of a field F.

 $(8 \times 1 = 8 \text{ weightage})$

Turn over

Part B

Answer any **two** questions from each module. Each question has weightage 2.

MODULE I

- 9. Let R be a ring with unity and of characteristic 2. Show that R contains a subring isomether ring \mathbb{Z}_2 .
- 10. Let E be an extension of a field F and $\alpha \in E$ be transcendental over F. Show that the end homomorphism $\phi_{\alpha} : F[x] \to E$ is a one to one map.
- 11. Verify whether $\mathbb{Q}(\sqrt{\pi})$ is an algebraic extension of $\mathbb{Q}(\pi)$.

MODULE II

- Let F be a finite field of characteristic p. Show that the number of elements in F is pⁿ; positive integer n.
- 13. Let $E = \mathbb{Q}(\sqrt{2}, \sqrt{3})$. Find the index $\{E : \mathbb{Q}\}$.
- 14. Show that every finite extension of a field of characteristic zero is a separable extension

Module III

- 15. Let $K = \mathbb{Q}(\sqrt{2}, \sqrt{3})$ and $E = \mathbb{Q}(\sqrt{2})$. Find the subgroup of the Galois group $G(K/\mathbb{Q})$ correspondence.
- 16. Show that the 8th cyclotomic polynomial $\phi_8(x)$ is $x^4 + 1$.
- 17. Show that the regular 7-gon is not constructive.

 $(6 \times 2 = 12)$

Part C

Answer any **two** questions, Each question has weightage 5,

- 18. (a) Define maximal ideal in a ring.
 - (b) Let R be a commutative ring with unity and M be an ideal of R. Show that M ideal of R if and only if R/M is a field.

3

D 102169

- 19. Let E be an extension of a field F and $\alpha \in E$ be algebraic over F. Show that there is an irreducible polynomial $p(x) \in F[x]$ such that
 - (a) $p(\alpha) = 0$ and
 - (b) if $f(x) \in F[x]$ is a nonzero polynomial with $f(\alpha) = 0$ then p(x) divides f(x).
- 20. (a) Show that for every prime p and every positive integer n there is a finite field of order p^n .
 - (b) Let E be a finite extension of the field \mathbb{Z}_p . Show that there is an $\alpha \in E$ such that $E = \mathbb{Z}_p(\alpha)$.
- 21. (a) Define the $n^{ ext{th}}$ cyclotomic polynomial $\phi_n\left(x\right)$ over a field **F**.
 - (b) Prove that:
 - (i) $\phi_n(x) \in F[x]$.
 - (ii) $\phi_n(x)$ divides $x^n 1$.

 $(2 \times 5 = 10 \text{ weightage})$