	40	70	O
U	42	10	J

(Pages: 3)

Name	

Reg. No.....

SECOND SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, APRIL 2023

(CBCSS)

Mathematics

MTH 2C 08—TOPOLOGY

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

Part A

Answer all questions.

Each question carries 1 weightage.

- 1. Define base of a topological space. Illustrate with an example.
- 2 Prove that a discrete space is second countable iff the underlying set is countable.
- 3 Let (X, \mathcal{I}) be a topological space and let $A \subset X$. Then prove that $\overline{A} = \overline{A}$.
- 4 Define a local base at a point x in a space X. Give an example. When will you say that a space is first countable?
- 5 When will you say that a space is connected? Prove that if X is connected then X cannot be written as the disjoint union of two nonempty closed sets.
- 6 In a Hausdorff space, prove that limits of sequences are unique.
- 7 State Urysohn's lemma.
- 8 Prove that every compact Hausdorff space is a T_3 space.

 $(8 \times 1 = 8 \text{ weightage})$

Turn over

Part B

Answer any two questions from each unit. Each question carries 2 weightage.

- Prove that the real line with the semi-open interval topology is not second countable
- Let (X,\mathfrak{T}) be a topological space and let $\mathfrak{B}\subset\mathfrak{T}$. Then prove that \mathfrak{B} is a base for \mathfrak{T}_{\sharp} $x \in X$ and any open set G containing x, there exist $b \in \mathcal{B}$ such that $x \in G$ and $B \subset G$.
- Let (X, \mathfrak{T}) and (Y, \mathfrak{U}) be topological spaces and let $f: X \to Y$ be any function. If f is \mathfrak{C}_{X} $x_0 \in X$, then prove that for every subset A of X, $x_0 \in \overline{A}$ implies $f(x_0) \in \overline{f(A)}$.

UNIT 2

- Prove that the co-countable topology on a set makes it into a Lindeloff space. 12
- Prove that the product topology is the weak topology determined by the projection fund 13
- Prove that every closed, surjective map is a quotient map.

Unit 3

- Suppose a topological space has the property that for every closed subset A of X, every 15 real valued function on A has a continuous extension to it. Then prove that X is normal
- Prove that all metric spaces are T_4 .
- Suppose y is an accumulation point of a subspace A of a T_1 space X. Then every neighbors 17

 $(6 \times 2 = 12)$

Part C

Answer any two from the following four questions. Each question carries 5 weightage,

- 18. (a) For a subset A of a topological space X, prove that $\overline{A} = A \cup A'$.
 - (b) Define sub-base for a topology. Let (X, \mathfrak{T}) be a topological space and S a family $\mathfrak{g}^{\mathfrak{g}}$ X. Then S is a sub-base for ${\mathfrak T}$ if and only if S generates ${\mathfrak T}.$

C 42789

- 19. (a) The topological product of a finite number of connected spaces is connected. Prove the statement.
 - (b) Prove that every closed and bounded interval is compact.
- 20. (a) For a topological space X, prove that the following statements are equivalent:
 - (i) X is locally connected.
 - (ii) Components of open subsets of X are open in X.
 - (iii) X has a base consisting of connected subsets.
 - (iv) For every $x \in X$ and every neighbourhood N of x, there exist a connected open neighbourhood M of x such that $M \subset N$.
 - (b) Prove that every quotient space of a locally connected space is locally connected.
- 21. (a) Prove that the axioms T_0 , T_1 , T_2 , T_3 and T_4 form a hierarchy of progressively stronger conditions.
 - (b) Give an example of:
 - (i) a T_0 space which is not T_1 .
 - (ii) a T₁ space which is not T₂.
 - (iii) a T_2 space which is not T_3 .

 $(2 \times 5 = 10 \text{ weightage})$