6

Name..... Reg. No.....

ECOND SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, APRIL 2022

April 2021 Session for SDE/Private Students

(CBCSS)

Mathematics

MTH 2C 08—TOPOLOGY

(2019 Admission onwards)

: Three Hours

Maximum: 30 Weightage

General Instructions

Covid Instructions are not applicable for Pvt/SDE students

- In cases where choices are provided, students can attend all questions in each section.
- The minimum number of questions to be attended from the Section/Part shall remain the same.
- The instruction if any, to attend a minimum number of questions from each sub section / sub part /
- There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage of the Section / Part.

Part A

Answer all questions.

Each question carries weightage 1.

- 1 Define neighbourhood of a point in a topological space. Prove that a subset of a topological space is open iff it is a neighbourhood of each of its points.
- Explain Sierpinski space. Prove that the Sierpinski space is not obtainable from a pseudometric.
- Let (X,\mathfrak{T}) be a topological space and let $A \subset X$. Then prove that $\overline{A} = \overline{A}$.
- Prove that the property of being a discrete space is divisible.
- Prove that compactness is preserved under continuous functions.
- In a Hausdorff space, prove that limits of sequences are unique.

Turn over

- 7 State Urysohn's lemma.
- State Urysonn's remain.

 8 Let X be a topological space and (Y, d) be a metric space. Let $\{f_n\}$ be a sequence of $\{f_n\}$. V. Then prove that if each f_n is considered. Let X be a topological space and (1, u, v). X to Y converging uniformly to $f: X \to Y$. Then prove that if each f_n is $\operatorname{contin}_{U_{0_{U_{\delta_n}}}}$ (8 × 1 × 8)

Part B

Answer any two questions from each unit. Each question carries weightage 2.

- 9 Let (X,\mathfrak{T}) be a topological space and S be a family of subsets of X. Then prove that \S
- For a subset A of a space X, prove that :

 $\overline{A} = \{v \in X : \text{ every neighbourhood of } y \text{ meets } A \text{ non-vacuously} \}.$

11 Let (X, \mathfrak{T}) and (Y, \mathfrak{U}) be topological spaces and let $f: X \to Y$ be any function. If f is at $x_0 \in X$, then prove that for every subset A of X, $x_0 \in \overline{A}$ implies $f(x_0) \in \widehat{f(A)}$.

- Let $\mathcal C$ be a collection of connected subsets of a space X such that no two members of $\mathcal C$ and separated. Then prove that union of all elements of $\mathcal C$ is connected.
- 13 Prove that the product topology is the weak topology determined by the projection fund 14 Prove that every quotient space of a locally connected space is locally connected.

- 15 Prove that a space X is a T_1 space iff every finite subset of X is closed. 16 Prove that all metric spaces are T_4 .
- 17 Prove that there can be no continuous one-to-one map from the unit circle S¹ into the re-

 $(6 \times 2 = 12)$

C 23355

Part C

3

Answer any two questions. Each question carries weightage 5.

- 18. (a) For a subset A of a topological space X, prove that $\overline{A} = A \cup A'$.
 - (b) Let $\{(X_i, \mathfrak{T}_i) : i = 1, 2, ...n\}$ be a collection of topological spaces and (X, \mathfrak{T}) their topological product. Then prove that each projection π_i is continuous. Moreover, if Z is any space, then prove that a function $f: Z \to X$ is continuous iff $\pi_i \circ f: Z \to X_i$ is continuous for all i = 1, 2, ...n.
- 19. (a) Let (X, d) be a compact metric space and let \mathcal{U} be an open cover of X. Then prove that there exist a positive real number r such that for any $x \in X$ there exist $V \in \mathcal{U}$ such that $B(x, r) \subset V$.
 - (b) Prove that every second countable space is first countable. Is the converse true? Justify your answer.
- 20. (a) In a topological space X, prove the following:
 - (i) Components are closed sets.
 - (ii) Any two distinct components are mutually disjoint.
 - (iii) Every non-empty connected subset is contained in a unique component.
 - (iv) Every space is the disjoint union of its components.
 - (b) Prove that every open subset of the real line in the usual topology can be expressed as the union of mutually disjoint open intervals.
- 21 State and prove the Tietze extension theorem.

 $(2 \times 5 = 10 \text{ weightage})$

1º