12

23357

(Pages: 4)

142)110.....

Reg. No.....

SECOND SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, APRIL 2022

(CBCSS)

Mathematics

MTH 2C 10—OPERATIONS RESEARCH

(2019 Admission onwards)

e: Three Hours

Maximum: 30 Weightage

General Instructions

- 1. In cases where choices are provided, students can attend all questions in each section.
- The minimum number of questions to be attended from the Section/Part shall remain the same.
- The instruction if any, to attend a minimum number of questions from each sub section / sub part / sub division may be ignored.
- There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage
 of the Section / Part.

Part A

Answer all questions.

Each question carries 1 weightage.

- Prove that $f(x) = x_1^2 + x_2^2 + 4x_3^2 2x_1x_2$ is a convex function.
- If f(X) is minimum at more than one of the vertices of S_F , then show that it is minimum at all those points which are the convex linear combinations of these vertices.
- . Write the following LP in the standard form:

$$Minimize f = x_1 + x_2 - x_3$$

subject to
$$2x_1 + 3x_2 + x_3 \ge 1$$

$$x_1 + 2x_2 - x_3 \le 2$$

$$3x_1 + 2x_2 - x_3 = 5$$

 $x_1 \ge 0$, $x_2 \ge 0$, x_3 is unrestricted.

Turn over

- 4. Show that the dual of the dual is the primal.
- 5. State the complementary slackness conditions.
- 6. Find the optimal strategies and the value of the game $\begin{pmatrix} -4 & 6 & 3 \\ -3 & -3 & 4 \\ 2 & -3 & 4 \end{pmatrix}$.
- 7. Solve the game $\begin{pmatrix} 1 & 7 \\ 6 & 2 \end{pmatrix}$.
- 8. Briefly explain the deletion of a variable while determining a new optimal solution from solution already obtained.

 $(8 \times 1:$

Part B

Answer any **two** questions from each of the following 3 units. Each question carries 2 weightage.

Unit I

9. Using graphical method solve the following linear programming problem.

Maximize
$$f(x) = 3x_1 + 5x_2$$

subject to
$$x_1 + 2x_2 \le 20$$

 $x_1 + x_2 \le 15$
 $x_2 \le 6$
 $x_1 \ge 0, x_2 \ge 0$.

- 10. Show that a vertex of the set S_F of feasible solutions is a basic feasible solution.
- Characterize all convex functions f (X) which are defined in a convex domain l
 differentiable.

Unit II

- 12 . Explain by an example the method of finding a basic feasible solution for a ${
 m transp}^{
 m g}$
- 13. Show that the transportation problem has a triangular basis.

3

C 23357

14. Explain the dual simplex method using the following example:

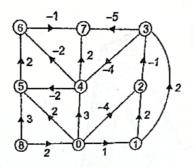
Minimize
$$f = 3x_1 + 5x_2 + 2x_3$$

subject to
$$-x_1 + 2x_2 + 2x_3 \ge 3$$

 $x_1 + 2x_2 + x_3 \ge 2$
 $-2x_1 - x_2 + 2x_3 \ge -4$
 $x_1, x_2, x_3 \ge 0$.

Unit III

- 15. State and prove the fundamental theorem of rectangular games.
- 16. Find the minimum path from V₀ to V₇ in the following graph:



17. Minimize $f = 3x_4 + 4x_5 + 5x_6$

subject to
$$2x_1 - 2x_4 - 4x_5 + 2x_6 = 3$$

 $2x_2 + 4x_4 + 2x_5 - 2x_6 = 5$
 $x_3 - x_4 + x_5 + x_6 = 4$
 $x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$
 x_1, x_2 integers.

 $(6 \times 2 = 12 \text{ weightage})$

Part C

Answer any **two** questions. Each question carries 5 weightage.

18. Explain the simplex method by solving the following linear programming problem:

Maximize
$$f(x) = 4x_1 + 5x_2$$

subject to $x_1 - 2x_2 \le 2$
 $2x_1 + x_2 \le 6$
 $x_1 + 2x_2 \le 5$
 $-x_1 + x_2 \le 2$
 $x_1 \ge 0, x_2 \ge 0$.

Turn over

Solve the following transportation problem:

	D_1	D_2	D_3	
O ₁	2	1	3	10
O ₂	4	5	7	25
O ³	6	0	9	25
O ₄	1	3	5	30
	20	20	15	

- 20. Write an algorithm to find a minimum spanning tree and prove it.
- 21. Explain the cutting plane method with an example.

 $(2 \times 5 = 10\pi)$