1	23	Q	5	Q
\mathbf{c}	40	J	J	v

1	$\mathbf{p}_{\mathbf{q}}$	ges		3)	
ι	1 51	COS	•	07	

Name				
Reg.	No			

SECOND SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, APRIL 2022

April 2021 Session for SDE/Private Students

(CBCSS)

Mathematics

MTH 2C 06-ALGEBRA-II

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

General Instructions

Covid Instructions are not applicable for SDE/Private Students

- 1. In cases where choices are provided, students can attend all questions in each section.
- 2. The minimum number of questions to be attended from the Section / Part shall remain the same.
- The instruction if any, to attend a minimum number of questions from each sub section / sub part / sub division may be ignored.
- 4. There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage of the Section / Part.

Part A

Answer all questions.

Each question carries 1 weightage.

- 1. Let R be a finite commutative ring with unity. Show that every prime ideal in R is a maximal ideal.
- 2. Show that $\sqrt{1+\sqrt[3]{2}}$ is algebraic over \mathbb{Q} .
- 3. Find a basis for $Q(\sqrt{2}, \sqrt{3})$ over \mathbb{Q} .
- 4. Find the number of primitive 8th roots of unity in GF (9).
- 5. What is the order of $G(Q(\sqrt[3]{2},i\sqrt{3})/Q(\sqrt[3]{2}))$?
- Let E be a finite extension of the field F. Show that if E is separable over F then each α in E is separable over F.

Turn over

- 7. Show that the regular 7-gon is not constructible.
- 8. Find the 6th cyclotomic polynomial over the rational Q.

 $(8 \times 1 = 8)$

Part B

Answer any two questions from each of the following 3 units. Each question carries 2 weightage.

Unit I

- 9. Prove that $Q(2^{1/2}, 2^{1/3}) = Q(2^{1/6})$.
- 10. Prove that a field F is algebraically closed if and only if every non-constant polynom
- Show that trisecting the angle is impossible.

Unit II

- 12. Let E be a field of p^n elements contained in an algebraic closure $\overline{\mathbb{Z}}_p$ of \mathbb{Z}_p . Show that th of E are precisely the zeros in \mathbb{Z}_p of the polynomial $x^{p^n} - x$ in $\mathbb{Z}_p[x]$.
- Let \overline{F} be algebraic closure of F and $E \leq \overline{F}$ be a splitting field over F. Prove that every is of E into \overline{F} leaving elements of F fixed is an automorphism of E.
- 14. Prove that If E is a finite extension of F, then {E:F} divides [E:F].

Unit III

- State the Main Theorem of Galois Theory.
- Show that Galois group of the $n^{ ext{th}}$ cyclotomic extension of Q has $\phi(n)$ elements and is to the group consisting of the positive integers less than n and relatively prime t
- 17. Let $y_1, y_2, ..., y_5$ be independent transcendental real numbers over Q. Show that the

$$f(x) = \prod_{i=1}^{5} (x - y_i)$$
 is not solvable by radicals over $F = Q(s_1, s_2, \dots, s_5)$, where s_i is the $i^{th}e$ symmetric function in y_1, y_2, \dots, y_5 .

symmetric function in y_1, y_2, \dots, y_5 .

 $(6 \times 2 = 12)^{\text{W}}$

C 23353

Part C

Answer any **two** questions. Each question carries 5 weightage.

- S. (a) Let R be a commutative ring with unity. Prove that M is a maximal ideal of R if and only if R/M is a field.
 - (b) Find a non-trivial proper ideal of $\mathbb{Z} \times \mathbb{Z}$ that is not prime.
- 9. (a) Let E be an algebraic extension of a field F. Show that there exist a finite number of elements $\alpha_1, \alpha_2, \ldots, \alpha_n$ in E such that $E = F(\alpha_1, \alpha_2, \ldots, \alpha_n)$ if and only if E is a finite extension of F.
 - (b) Let E be an extension of a field F. Show that the set G (E/F) of all automorphisms of E leaving F fixed is a group under function composition and the fixed field of G (E/F) contains F.
- 0. (a) Let F be a field, and let α and β be algebraic over F with $\deg(\alpha, F) = n$. Prove that the map $\psi_{\alpha\beta}: F(\alpha) \to \beta$ defined by $\psi_{\alpha\beta} \left(c_0 + c_1\alpha + \ldots + c_{n-1}\alpha^{n-1} \right) = c_0 + c_1\beta + \ldots + c_{n-1}\beta^{n-1}$ for $c_i \in F$ is an isomorphism of $F(\alpha)$ onto $F(\beta)$ if and only if α and β are conjugate over F.
 - (b) Find the splitting field of the polynomial $x^4 + x^2 + 1$ in Q[x].
- Let F be a field of characteristic 0, and let $a \in F$. Prove that if K is the splitting field of $x^n a$ over F, then G (K/F) is a solvable group.

 $(2 \times 5 = 10 \text{ weightage})$