C 4748

(Pages: 3)

Name.....

Reg. No....

S. ND SEM

M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, APRIL 2021

(CBCSS)

Mathematics

MT 2C 06-ALGEBRA-II

(2019 Admissions)

Time : Three Hours

Maximum: 30 Weightage

General Instructions

- In cases where choices are provided, students can attend all questions in each section.
- 2. The minimum number of questions to be attended from the Section/Part shall remain the same.
- There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage
 of the Section / Part.

Part A

Answer all questions.

Each question carries 1 weightage.

- 1. Show that a commutative ring with unity is a field iff it has no proper non-trivial ideals.
- 2. Show that $\sqrt{1+\sqrt{3}}$ is algebraic over Q.
- 3. Show that doubling the cube is impossible.
- 4. What is the order of $G\left(Q\left(\sqrt[3]{2}\right)/Q\right)$?
- 5. Prove that if E is an algebraic extension of a perfect field F, then E is perfect.
- Show that the Galois group of the pth cyclotomic extension of Q for a prime p is cyclic of order p − 1.
- Show that the regular 18-gon is not constructible.
- 8. Show that the polynomial $x^5 1$ is solvable by radicals over Q.

 $(8 \times 1 = 8 \text{ weightage})$

Turn over

Answer any two questions from each of the following 3 units, Each question carries 2 weightage.

UNIT I

- 9. Let E be a simple extension $F(\alpha)$ of a field F, and let α be algebraic over F. Let t_{h_0} depends on the uniquely $e_{X_{D_1}}$. Let E be a simple extension $F(\alpha)$.

 (a, F) be $n \ge 1$. Show that every element β of $E = F(\alpha)$ can be uniquely $\exp_{F_{\alpha}} e_{\alpha} e_{\beta}$.

 The b-are in F. $\beta = b_0 + b_1 \alpha + \dots + b_{n-1} \alpha^{n-1}$, where the b_i are in F.
- 10. Show that $Q\left(2^{\frac{1}{2}}, 2^{\frac{1}{3}}\right) = Q\left(2^{\frac{1}{6}}\right)$.
- 11. Show that a field F is algebraically closed iff every non-constant polynomial in $\mathbb{P}_{\left[z\right]_{f_{2e_{0}}}}$

UNIT II St

- Find all the primitive 18th roots of unity in GF (19).
- 13. Let F be a finite field of characteristic p. Show that the map $\sigma_p : F \to F$ defined by $\sigma_p(q)_{a_p}$ a ∈ F is an automorphism.
- 14. Show that if K is a finite extension of E and E is a finite extension of F, then K is separable war F

UNIT III

- 15. State the Main Theorem of Galois Theory.
- 16. Find $\phi_{12}(x)$ in Q[x].
- 17. Let F be a field of characteristic zero and F contains all the n^{th} roots of unity. Show that if $K_{\mathbb{R}}$ splitting field of $x^n - a$ over F for some $a \in F$, then G(K|F) is a soluble group.

 $(6 \times 2 = 12 \text{ weight})$

(b)

(a

1. L

3

C 4748

Part C

Answer any **two** questions. Each question carries 5 weightage.

- 3. (a) Let F be a field. Show that an ideal $\langle p(x) \rangle \neq \{0\}$ of F[x] is maximal iff p(x) is irreducible over F,
 - (b) Show that $\frac{z_5[x]}{\langle x^3 + 3x + 2 \rangle}$ is a field.
-). (a) Show that if E is finite extension field of a field F, and K is a finite extension field of E, then K is a finite extension of F, and [K:F]=[K:E][E:F].
 - (b) Show that if E is a finite extension of F, then $\{E:F\}$ divides [E:F].
-). State and prove the theorem of the conjugation isomorphisms.
- 1. Let K be the splitting field of $x^4 + 1$ over Q:
 - (i) Describe the group G(K|Q); and
 - (ii) Give the group and field diagrams for K over Q.

 $(2 \times 5 = 10 \text{ weightage})$