) 102125

(Pages : 3)

Name.....

Reg. No.....

SECOND SEMESTER M.Sc. (CBCSS) REGULAR/SUPPLEMENTARY DEGREE EXAMINATION, APRIL 2024

Chemistry

CHE 2C 05-GROUP THEORY AND CHEMICAL BONDING

(2019 Admission onwards)

Time: Three Hours

Maximum Weightage: 30

Section A

Answer any **eight** questions. Each question carries weightage 1.

- 1. Assign Schoenflies symbol of point group for (a) Pyridine; (b) Ethane (staggered conformation).
- 2. Generate 3 \times 3 matrices for (a) $\mathrm{C_4}$; (b) $\mathrm{S_4}.$
- 3. Distinguish between reducible and irreducible representations with examples.
- 4. State and explain rearrangement theorem.
- 5. Distinguish between Vanishing and Nonvanishing integrals with example.
- 6. Two vertical planes of water molecule belong to different classes of operations but the three vertical planes of ammonia belong to the same class. Why?
- 7. State and explain Born-Oppenheimer approximation.
- 8. NO^+ is more stable than Na but NO^+ is less stable than CO. Why?
- 9. Write spectroscopic term symbol for the ground. State of (a) B_2 ; (b) O_2^+ .
- 10. Explain the term 'free valence' with reference to conjugated systems.

 $(8 \times 1 = 8 \text{ weightage})$

Section B

Answer any **six** questions. Each question carries weightage 2.

- 11. List symmetry elements and operations associated wth D_{2h} . Classify them into different classes of operations.
- 12. Develop Gamma cart for H_2O (C_{2v} point group).
- 13. State Great orthogonality theorem. What are the consequences of the theorem? Discuss.

Turn over

14. Predict allowed electronic transitions of formaldehyde. Use C_{2v} character t_{ab}

				σ'_{vyz}		
A_1	1	1	1	1	z	x^2, y^2, z^2
${\rm A}_2$	1	1	-1	-1	Rz	xy
B_1	1	-1	1	-1	x, Ry	xz
${\rm B}_2$	1	-1	-1	1	y, Rx	x^{2}, y^{2}, z^{2} xy xz yz

- 15. Use HMO method to find the P_1 (π) molecular orbitals and the corresponding
- 16. Briefly discuss sp^2 hybridization to find the composition of hybridized orbital:
- 17. Explain with example direct product representations.
- 18. Reduce the following representation T into its IR components. Use $C_{2\tau}$ than

 $(6 \times 2 = 12)$

Section C

Answer any **two** questions.

19. Find IR and Raman active vibrations of CH₄. Use Td ch Each question carries weightage 5.

Td	\mathbf{E}	8C.	$3C_2$		tons 01	$^{ m CH}_4$. Use $^{ m Td}$	character table :
Α,	1	3	$\frac{aC_2}{}$	$6S_4$	$6\sigma_{ m d}$		
A_2	1	1	1	1			
	1	1	1	-1	1		$x^2 + y^2 + z^2$
\mathbf{E}	2	- 1		•	-1		w + y + 2 -
$\mathbf{T_1}$	3	,	2	0	0		
$\mathrm{T_2}$	3	0	-1	1			$(2z^2 - x^2 - y^2, x^2 - y^2)$
	_	0	-1	-1	-1	(Rx, Ry, Rz)	•
				_	1	(x, y, z)	
							(xy, xz, yz)

525992

3

D 102125

- 20. Compare V.B. and M.O. method of bonding as applied to H₂. Which is found better? Justify
- What are the assumptions in HMO method? Use the theory to find the molecular orbitals and the corresponding energes for benzene. 21.
- 22. Discuss briefly:
 - (a) Mutual exclusion principle from group theoretical point of view.
 - (b) Correlation diagram applied to bonding.

 $(2 \times 5 = 10 \text{ weightage})$