\mathbf{C}	42	74	3

(Pages: 3)

Name.....

Reg. No.....

SECOND SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, APRIL 2023

(CBCSS)

Chemistry

CHE2C05—GROUP THEORY AND CHEMICAL BONDING

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

Section A

Answer any **eight** questions. Each question carries a weightage of 1.

- 1. Find Schoenflies symbol of point group for:
 - (a) CH₂Cl₂.

- (b) Allene.
- 2. Generate matrices (3×3) for (a) C_4 ; (b) S_4 .
- 3. Distinguish between degenerate and nondegenerate representations.
- 4. State rules for assigning Mulliken's symbols for irreducible representations.
- 5. You are given $\int_{-a}^{+a} x^3 dx$. Predict whether it is a vanishing integral or not. Justify.
- 6. Write projection operator for A_1 symmetry (\widehat{P}_{A_1}) for C_2v molecule.
- 7. Arrange O_2 , O_2^+ and O_2^- in the increasing order of stability. Justify your answer.
- 8. Write spectroscopic term symbol for (a) O_2 ; (b) C_2 .
- 9. The energy of $\pi(\rho_1)$ molecular orbitals of benzene are $\alpha + 2\beta$, $\alpha + \beta$, $\alpha + \beta$, $\alpha \beta$, and $\alpha 2\beta$. Find the delocalization energy.
- State and explain Born-Oppenheimer approximation.

 $(8 \times 1 = 8 \text{ weightage})$

Turn over

Section B

Answer any six questions. Each question carries a weightage of 2.

- 11. Show that the four symmetry operations $E, C_2 z, \sigma_h xy$ and i form a Mathematical content of the state of the symmetry operations of the symmetry
- 12. Generate group multiplication table for C_3v .
- Taking the positional coordinates of all atoms of cis butadiens $(C_2 b)$ general
- 14. State great orthogonality theorem. Use the theorem to derive C_3 character table.
- 15. Find IR and Raman active vibrations of $\mathrm{NH_3}$. Use $\mathrm{C_3}v$ character table.

	,				table.
C_3v	Е	$2C_3$	$3\sigma_v$		
A_1	1	1	1	z	r^2 1 2 2
A_2	1	1	-1	Rz	$x^2 + y^2, z^2$
Е	2	-1	0	(x,y) (Rx, Ry)	(~2 2
1				, 19	$(x^2-y^2, xy)(xz, yz)$

16. Find molecular orbitals of $\mathrm{H}_2\mathrm{O}$. Use C_2v character table.

$\stackrel{\mathrm{C}_{2^{\mathcal{V}}}}{-\!\!\!\!-\!\!\!\!-}$	Е	C_{2z}	σ_{vxz}	σ^1_{vyz}		
${\rm A}_1$	1	1	1	1	z	x^2, y^2, z^2
A_2	1	1	-1	-1	R_z	ху
$\mathbf{B_1}$	1	-1	1	-1	x, R _y	al , *
$\stackrel{\mathrm{B_2}}{-}$	1	-1	-1	1	y, R_x	yz
					1.	J-

C 42743

 $(6 \times 2 = 12 \text{ weightage})$

- 17. Briefly discuss Sp² hybridization.
- 18. Find $\pi(\rho_i)$ molecular orbitals and the corresponding energies of allyl cation using HMO method.

Section C

Answer any two questions. Each question carries a weightage of 5.

19. Find hybridized orbitals of CH4. Use Td character table

1	1	1	1	1000	
					$x^2 + y^2 + z^2$
1	1	-1	-1		
-1	2	0	0		$(2z^2-x^2-y^2, x^2-y^2)$
0	-1	1	-1	(Rx, Ry, Rz)	
0	-1	-1	1	(x, y, z)	(xy, xz, yz)
	-1 0	-1 2 0 -1	-1 2 0 0 0 -1 1	$egin{array}{cccccccccccccccccccccccccccccccccccc$	-1 2 0 0 0 (Rx, Ry, Rz)

- 20. Briefly discuss MO theory of bonding as applied to H_2^+ .
- 21. Find allowed electronic transitions in formal dehyde. Use C_2v character table.
- 22. (a) Generate gamma cart for $\mathrm{H}_2\mathrm{O}$. Reduce it into its IR components. Use C_2v character table.
 - (b) Explain the term 'block diagonalization'. Discuss its impoprtance in group theory.

 $(2 \times 5 = 10 \text{ weightage})$