(Pages: 3)

24			
ŕ	Name	•••••	•••••

01

Reg. No.....

SECOND SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, APRIL 2022

(CBCSS)

Chemistry

CHE 2C 05—GROUP THEORY AND CHEMICAL BONDING

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

General Instructions

- 1. In cases where choices are provided, students can attend all questions in each section.
- 2. The minimum number of questions to be attended from the Section/Part shall remain the same.
- The instruction if any, to attend a minimum number of questions from each sub section/sub part/ sub division may be ignored.
- 4. There will be an overall ceiling for each Section/Part that is equivalent to the maximum weightage of the Section/Part.

Section A

Answer any **eight** questions. Each question carries a weightage of 1.

- 1. List the symmetry elements and operations associated with $\mathrm{D}_3\mathrm{d}$.
- 2. Explain with example (a) cyclic group; (b) abelian group.
- 3. State and explain rearrangement theorem.
- 4. Show that $\sigma_{xy} \times \sigma_{xz} = c_2(x)$.
- 5. Generate matrices for (a) c_6 ; (b) σ_{xy} using positional coordinates x, y, z.
- 6. Explain 'transition moment integral'.
- 7. Distinguish between symmetric direct product and ordinary direct product.
- 8. O_2^+ is more stable than O_2^- . Why ?

Turn over

- 9. The energy of $\pi(p_1)$ molecular orbitals of benzene are $\alpha + 2\beta, \alpha + \beta, \alpha \times \beta, \alpha \beta$ and
- 9. The energy of the delocalization energy.

 1. Write spectroscopic term symbol of c_2 .
- on B

(8 × 1;

Section B

Answer any **six** questions.

Each question carries a weightage of 2.

- 11. Show that the four symmetry operations $E, C_2(x), C_2(y)$ and $C_2(z)$ form a matter under multiplication.
- 12. Ethylele belongs to $D_2h(E,C_2(x),C_2(y),C_2(z))$ $\sigma_{xy},\sigma_{xz},\sigma_{yz},i$. Taking the position of all atoms generate a reducible representation.
- 13. Rationalize mutual exclusion principle using group theory.
- 14. Find $\pi(p_1)$ molecular orbitals and their energies for allyl anion using HMO metals.
- 15. Find allowed electronic transitions of Carbonyl group. Use $\mathbf{C}_2 v$ character table:

$\frac{C_2 v}{c_2}$	Е	$\mathbf{C}_{2^{\mathbf{Z}}}$	σ_{vxz}	$\sigma_{v}^{'}yz$		
A ₁	1	1	1	1	z	x^2, y^2, z^2
A ₂	1	1	1	-1	R_z	xy
B ₁	1	-1	1	-1	x, R_y	xz
B_2	1	-1	-1	1	у, R _x	and the same

16. Find IR and Raman active vibrations of NH₃. Use C_3v character table :

C_{3}^{ν}	E	20			or MH ₃ . Use C
		$\frac{2C_3}{}$	$3\sigma_{v}$		1
A_1	1	1	1		
A_2	1		1	z	$x^2 + y^2, z^2$
E	•	1	-1	$R_{\mathcal{Z}}$	$x + y^2, z^2$
-	2	-1	0	112	
			0	(x,y)	$(x^2 - y)$
				(R 7)	(x^2-y^2, xy)
				(R_x, R_y)	(xz, yz)

3

C 23313

17. The Pi molecular orbitals of cis butadiene are given below. Find the free valence around each c atom.

$$\begin{split} &\Phi_1 = 0.372 \; P_1 + 0.602 \; P_2 + 0.602 \; P_3 + 0.372 \; P_4 \\ &\Phi_2 = 0.602 \; P_1 + 0.372 \; P_2 - 0.372 \; P_3 - 0.602 \; P_4 \end{split}$$

$$\Phi_3 = 0.602 P_1 - 0.371 P_2 - 0.372 P_3 + 0.602 P_4$$

$$\Phi_4 = 0.372 \ P_1 - 0.602 \ P_2 + 0.602 \ P_3 - 0.372 \ P_4$$

18. With the help of correlation diagram explain noncrossing rule.

 $(6 \times 2 = 12 \text{ weightage})$

Section C

Answer any two questions. Each question carries a weightage of 5.

- 19. State Great Orthogonality Theorem. What are the consequences of the theorem? Use the theorem to derive C_4v character table.
- 20. Find the molecular orbitals of H_2O . Use C_2v character table. Predict allowed electronic transitions.
- Find the hybridized orbitals B in BF_3 . Use D_3h character table :

D_3h	Е	$2C_3$	$3C_2$	σ_h	$3S_3$	$3\sigma_d$		
A ₁	1	1	1	1	1	1		$x^2 + y^2 - z^2$
A_2	1	1	-1	1	1	-1	Rz	$x^{2} + y^{2} - z^{2}$ $(x^{2} - y^{2}, xy)$ (xz, yz)
E'	2	-1	0	2	-1	0	(x,y)	$(x^2 - y^2, xy)$
A,"	1	1	1	-1	-1	-1		
A."	1	1	-1	-1	-1	1	z	
Е"	2	-1	0	-2	1	0	(R_x, R_y)	(xz, yz)

22. Compare V.B. and M.O. theory of binding as applied to H_2 . Which is found better?

 $(2 \times 5 = 10 \text{ weightage})$