7	82840
	OHO L

(Pa	ges	•	2)	
V. 4.1	4.08	:	331	

Name

Reg. No.....

SECOND SEMESTER M.A./M.Sc./M.Com. DEGREE EXAMINATION, JUNE 2020 (CUCSS)

Chemistry

CH 2C 06—CO-ORDINATION CHEMISTRY

(2015 Admissions)

Time: Three Hours

Maximum: 36 Weightage

Section A

Answer all questions.

Each question carries a weightage of 1.

- Explain, why stepwise equilibrium constant values decrease as the number of ligands attached to the metal increases?
- 2. Chelate effect is an entropy effect. Justify the statement.
- Arrange the ligands NH₃, H₂O,OH⁻,Cl⁻ and CO in increasing order of crystal field strength and justify your answer.
- 4. Give a note on Nephelauxetic effect and series.
- 5. The magnetic moment of Gd³⁺ is less than Dy³⁺. Why?
- 6. For Co (II) complexes, generally the observed magnetic moment is higher than that calculated by the spin only formula. Why?
- 7. How many peaks do you expect in the ESR spectrum of $[Mn (H_2O)_6]^{2+}$? Explain your answer.
- Which among the following have the highest CO stretch frequency in IR spectrum? (i) Ni(CO)₄,
 (ii) [Co(CO)₄]⁻ (iii) Fe(CO)₄]²⁻. Justify your answer.
- 9. $[Co(NH_3)_5X]^{2+}$ undergoes acid hydrolysis as well as base hydrolysis. What are the products obtained by the above two hydrolysis?
- 10. Distinguish between inert and labile complexes with examples.
- 11. Write down the elementary steps involved in the mechanism of the reaction : $[Cr(H_2O)_6]^{2+} + [Co(H_2O)_5Cl]^{2+} \rightarrow [Cr(H_2O)_5Cl]^{2+} + [Co(H_2O)_6]^{2+}$
- 12. What is photoisomerisation? Illustrate.

 $(12 \times 1 = 12 \text{ weightage})$

Section B

Answer any eight questions. Each question carries a weightage of 2.

- 18. Write down the stepwise and overall formation constants for the reaction $\text{Cu}^{2+} + 4\text{NH}_3 \rightarrow \left[\text{Cu}(\text{NH}_3)_4 \right]^{2+} \text{. Also Calculate } \beta_4 \text{ value for the reaction if } \log k_1 = 4, \log k_2 = 3, \log k_3 = 2.7 \text{ and } \log k_4 = 2.$
- 14. Describe the pH-metry method for determining Binary formation constant.
- 15. Sketch the d-orbital splitting pattern of metal ion in [NiCl₄]²⁻. Sketch the change in d orbit splitting when Cl⁻ ion is completely replaced by CN⁻ ion.
- 16. Explain how does a Pi acceptor ligand influences the magnitude of the splitting parameter a pi bonded octahedral complex.
- 17. What do you mean by spin only magnetic moment? Calculate the spin only magnetic moment of a) [Fe(CN)₆]⁴⁻; b) [Ru(NH₃)₆]³⁺; c) [Cr(NH₃)₆]²⁺.
- 18. State and explain the selection rules for d-d transition.
- 19. Explain hyperfine structure of EPR spectrum taking Cu(II) complex as example.
- 20. Sketch the Mössbauer spectra for the complexes $K_4[Fe(CN)_6]^{4-}$ and $K_3[Fe(CN)_6]^{4-}$. Explain t features of the spectra.
- 21. What is trans effect? Propose the synthesis for 'cis' and trans $[PtCl_2(NO_2) NH_3]^{-}$.
- 22. Discuss the Eigen-Wilkins mechanism of substitution reactions in octahedral complexes.
- 23. Comment on the difference in the activation energies of the electron transfer reactions between the following pairs:
 - (a) $[Fe(CN)_6]^{4-}$ and $[Fe(CN)_6]^{3-}$ 19.6kJ
 - (b) $[\text{Co(NH}_3)_6]^{2+}$ and $[\text{Co(NH}_3)_6]^{3+}$ 56.5kJ
- 24. Discuss the reducing and oxidizing character of [Ru(bipy)₃]²⁺.

 $(8 \times 2 = 16 \text{ weightage})$

Section C

Answer any **two** questions.

Each question carries a weightage of 4.

25. Discuss the merits of MOT over CFT and sketch the MO diagram for $[Co(NH_3)_6]^{2+}$ and predict

- 26. Give a comparison between Orgel diagrams and Tanabe Sugano diagrams with special reference to their importance in the interpretation of electronic spectra.
- With suitable examples, discuss the applications of NMR spectroscopy in structural studies of metal complexes.
- 28. Brief out the methods for distinguishing Outer and Inner sphere redox reactions.

 $(2 \times 4 = 8 \text{ weightage})$