\mathbf{r}	4	0	•	-	
\mathbf{D}	1	ð	1	Э	8

(Pages	:	3)
--------	---	----

Nan	e

Reg. No.....

FIRST SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, NOVEMBER 2021

(CBCSS)

Physics

PHY IC 02—MATHEMATICAL PHYSICS—1

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

General Instructions

- 1. In cases where choices are provided, students can attend all questions in each section.
- 2. The minimum number of questions to be attended from the Section / Part shall remain the same.
- 3. The instruction if any, to attend a minimum number of questions from each sub section / sub part / sub division may be ignored.
- 4. There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage of the Section / Part.

Section A

8 Short questions answerable within 7½ minutes. Answer all questions, each carry weightage 1.

- 1. If V represents a vector derive the curl of V in orthogonal curvilinear coordinates.
- 2. Is the given matrix Hermitian $\begin{bmatrix} 1 & -i & -3i \\ i & 5 & 0 \\ 3i & 0 & 2 \end{bmatrix}$
 - 3. Explain concept of outer product in tensors.
 - 4. With an example explain features of a hyperbolic partial differential equation.
- 5. Show that $\int_{-1}^{+1} x P_n(x) p_{n-1}(x) dx = \frac{2n}{4n^2 1}.$

Scanned with OKEN Scanne

- 6. Explain the convolution theorem of Fourier transform.
- 7. Explain when can a second-order linear homogeneous differential equation can be called adjoint.
- 8. Distinguish between Fourier integral and Fourier transform.

 $(8 \times 1 = 8 \text{ weight$

Section B

4 essay questions answerable within 30 minutes.

Answer any two questions, each carry weightage 5.

- 9. What are orthogonal curvilinear co-ordinate systems? Obtain the mathematical express divergence in terms of curvilinear coordinates.
- 10. Using appropriate differential equation explain Laguerre polynomials and associated La polynomials. Obtain their representation in series form.
- 11. Explain the following properties of Fourier series: (1) Convergence (2) Integration (3) Differentiation. Obtain the sine and cosine series in the interval $(0, \pi)$ for a function f
- 12. Explain the Frobenius' method of finding solution to homogenous differential equation of order.

 $(2 \times 5 = 10)$ weight

Section C

7 problems answerable within 15 minutes. Answer any four questions, each carry weightage 3.

13. Is the given matrix orthogonal
$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

D 13158

- 14. Prove that $P_{2m+1}(0) = 0$.
- 15. A string of length n is stretched until the wave speed is 40 m/sec. It is given an initial velocity of 4 $\sin(x)$ from its initial position. What is location of maximum displacement?
- 16. Evaluate $\Gamma\left(-\frac{1}{2}\right)$.
- 17. Evaluate Laplace transform of $\frac{\cos \sqrt{t}}{\sqrt{t}}$.
- 8. Prove that $H_{2n}(0) = (-1)^n \frac{(2n)!}{n!}$.
- 9. Expand the function $f(x) = \sin x$ as a cosine series in the interval $(0, \pi)$

 $(4 \times 3 = 12 \text{ weightage})$