D 114584

(Pages : 4)	Name
	Reg. No

FIRST SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, NOVEMBER 2024

(CBCSS)

Mathematics

MTH 1C 02—LINEAR ALGEBRA

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

Part A

Answer all questions.

Each question carries 1 weightage.

- Define Vector Space.
- 2. Find two linear operators T and U on \mathbb{R}^2 such that TU=0 but $UT\neq 0$.
- Find the dimension of the null space of a nonzero linear functional on a finite dimensional vector space V.
- 4. Let F be a field and let $\alpha = (x_1, ..., x_n)$ be a vector in F^n . Find $[\alpha]_B$, where B is the standard ordered basis for F^n .
- 5. Show that similar matrices have the same characteristic polynomial.
- 6. Let V be a vector space and E be a projection of V. Prove that a vector β is in range of E if and only if $E\beta = \beta$.
- 7. Let V be a vector space and (/) an inner product on V. Show that $(0/\beta) = 0$ for all $\beta \in V$.
- 8. Verify that the standard inner product on F^n is an inner product.

 $(8 \times 1 = 8 \text{ weightage})$

Turn over

Part B (Paragraph Type Questions)

Answer any **two** questions, choosing two questions from each module.

Each question carries a weightage 2.

MODULE I

- 9. Show that a nonempty subset W of V is a subspace of V if and only if for each pair of vector in W and each scalar c in F the vector $c\alpha + \beta$ is again in W.
- 10. Let V and W be two vector spaces over the field F. Let T and U be linear transformations f into W and c is any element of F. Define (T+U) by $(T+U)(\alpha) = T(\alpha) + U(\alpha)$ and $(cT)(\alpha) = cT(\alpha)$ for $\alpha \in V$. Show that the set of all linear transformations from V into W, tog with the addition and scalar multiplication defined above, is a vector space over the field F
- 11. Let V, W and Z be vector spaces over the field F. Let T be a linear transformation from V i and U be a linear transformation from W into Z. Then show that the composition function defined by $(UT)(\alpha) = U(T(\alpha))$ is a linear transformation from V into Z.

Module II

- 12. Let V be the space of all polynomial functions from \mathbb{R} into \mathbb{R} of the form $f(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^2 + c_4 x + c_5 x^2 + c_5 x^2$
- 13. Let V be a finite dimensional vector space over the field F and let $B = \{\alpha_1, ..., \alpha_n, B' = \{\alpha_1', ..., \alpha_n'\}$ be ordered bases for V. Suppose T is a linear operator on V. If $P = [P_1, ..., P_n]$ the $n \times n$ matrix with columns $P_j = [\alpha'_j]_B$, then prove that $[T]_{B'} = P^{-1}[T]_B P$.
- 14. Let A be the (real) 3×3 matrix $\begin{bmatrix} 3 & 1 & -1 \\ 2 & 2 & -1 \\ 2 & 2 & 0 \end{bmatrix}$. Find the characteristic values and charact vectors of A.

3

D 114584

MODULE III

- 15. For $\alpha = (x_1, x_2)$ and $\beta = (y_1, y_2) \in \mathbb{R}^2$, define $(\alpha/\beta) = x_1y_1 x_2y_1 x_1y_2 + 4x_2y_2$. Verify that (/) is an inner product
- 16. If $V = W_1 \oplus ... \oplus W_k$, then show that there exist k linear operators $E_1,...,E_k$ on V such that :
 - (i) each E_i is a projection;
 - (ii) $E_i E_j = 0 \text{ if } i \neq j$;
 - (iii) $I = E_1 + ... + E_k$; and
 - (iv) the range of E_i is W_i .
- 17. Let W be a finite-dimensional subspace of an inner product space V and let E be the orthogonal projection of V on W. Then prove that E is an idempotent linear transformation of V onto W, W^{\perp} is the null space of E, and $V = W \oplus W^{\perp}$.

 $(6 \times 2 = 12 \text{ weightage})$

Part C (Essay Type Questions)

Answer any **two** questions.

Each question carries a weightage 5.

- 18. If W_1 and W_2 are finite dimensional subspace of a vector space V, then prove that W_1+W_2 is finite dimensional and dim $W_1+\dim W_2=\dim \left(W_1\cap W_2\right)+\dim \left(W_1+W_2\right)$.
- 19. Let V and W be finite-dimensional vector spaces over the same field F such that dim V = dim W. If T is a linear transformation from V into W, then prove that the following are equivalent:
 - (i) T is invertible
 - (ii) T is non-singular
 - (iii) T is onto; i.e., the range of T is W.
 - (iv) If $\{\alpha_1, \alpha_2, ..., \alpha_n\}$ is a basis for V, then $\{T \alpha_1, T \alpha_2, ..., T \alpha_n\}$ is a basis for W.
 - (v) There is some basis $\{\alpha_1, \alpha_2, ..., \alpha_n\}$ for V such that $\{T \alpha_1, T \alpha_2, ..., T \alpha_n\}$ is a basis for W.

Turn over

D 11

- 20. If f is a non-zero linear functional on the vector space V, then prove that the null space of hyperspace in V. Conversely, show that every hyperspace in V is the null space of a (not ur non-zero linear functional on V.
- 21. State and prove Gram-Schmidt Orthogonalization process. Consider $\operatorname{vectors} \beta_1 = (3,0,4), \beta_2 = (-1,0,7), \beta_3 = (2,9,11) \text{ in } \mathbb{R}^3$ with standard inner product. Apply (Schmidt Orthogonalization process to β_1,β_2,β_3 , and obtain an orthonormal basis for \mathbb{R}^3 .

 $(2 \times 5 = 10 \text{ weight})$