349559

D 32717

(Pages: 3)

Name.....

Reg. No.....

FIRST SEMESTER M.Sc. (CBCSS) REGULAR/SUPPLEMENTARY DEGREE EXAMINATION, NOVEMBER 2022

Mathematics

MTH1C02—LINEAR ALGEBRA

(2019 Admission onwards)

Time: Three Hours

Maximum Weightage: 30

Part A

Answer all questions.

Each question carries 1 weightage.

- 1. Let $\mathbb C$ be the field of complex numbers. Find the vectors in $\mathbb C^3$ spanned by the vectors (1,0,-1),(0,1,1) and (1,1,1).
- 2. Let 0 be the zero vector of a vector space V. Prove that v0 = 0 for all $v \in V$.
- 3. Let S be a non-empty subset S of a vector space V. Prove that S is a subspace of V if $\alpha u + \beta v \in S$ for every $u, v \in S$ and for every scalar α , β .
- 4. Check whether $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined as T(x,y) = (x-y,0) is a linear transformation or not.
- 5. In the Euclidean space \mathbb{R}^3 with standard innerproduct, prove that the vectors (1, 0, 1), (-1, 0, 1) and (0, 1, 0) is an orthogonal set of vectors.
- 6. Prove that the similar matrices have same characteristic polynomials.
- 7. Let $W_1, ..., W_2$ be subspaces of a vector space V. Prove that W_1 and W_2 are linearly independent if and only if $W_1 \cap W_2 = \{0\}$.
- 8. Let $\alpha = (x_1, x_2)$ and $\beta = (y_1, y_2)$ be element in \mathbb{R}^2 . Prove that $(\alpha \mid \beta) = x_1y_1 x_2y_1 x_1y_2 + 4x_2y_2$ is an inner product on \mathbb{R}^2 .

 $(8 \times 1 = 8 \text{ weightage})$

Part B

Answer any six by choosing two questions from each unit, Each question carries 2 weightage,

Unit I

- 9. Let \mathbb{F} be a field. prove that \mathbb{F}^n is a vector space.
- Let S be a subset of a vector space V. Prove that a subspace spanned by S is the set of all linear combinations of elements in S.

Turn over

11. If A is an $n \times n$ matrix over F and B, C are $n \times p$ matrices over F. Prove that for a_{ny} , k, A(kB+C) = kAB+AC.

Unit II

- 12. Prove or disprove: For any subset S of a finite dimensional vector space V, (S°): subspace spanned by S.
- 13. Let $T: \mathbb{C}^2 \to \mathbb{C}^2$ defined as projection to the first component. Let \mathcal{B} be the standard $h_{\mathbb{S}}$ \mathbb{C}^2 and let $\mathcal{B}' = \{(1, i), (-i, 2)\}$. Find the matrix relative to the pair, \mathcal{B} , \mathcal{B}' .
- 14. Let W_1 and W_2 be subspaces of a finite dimensional vector space. Prove that $W_1 = W_2$ only $W_1^\circ = W_2^\circ$.

Unit III

- 15. Prove that an orthogonal set of non-zero vectors is linearly independent.
- 16. Let V be a finite dimensional vector space. Let $W_1, ..., W_k$ be subspaces of V and let ordered basis for each W_i for i = 1, ..., k. If $W_1, ..., W_k$ is linearly independent prove the sequence $\mathcal{B} = \{\mathcal{B}_1, ..., \mathcal{B}_k\}$ is an ordered basis for $W_1 + ... + W_k$.
- 17. If W_1 be any subspace of a finite dimensional vector space V then prove the existent subspace W_2 of V such that $V = W_1 \oplus W_2$.

 $(6 \times 2 = 12 \text{ weight})$

Part C

Answer any **two** questions.

Each question carries 5 weightage.

- 18. Let V be a vector space which is spanned by a finite set of vectors $v_1, ..., u_m$. Prove th independent set of vectors in V is finite and contains no more than m elements.
- 19. Let V be a vector space over a field F and let $\{\alpha_1, \alpha_2, ..., \alpha_n\}$ be an ordered basis for W be a vector space over the same field and let $\beta_1, \beta_2, ..., \beta_n$ be any n vectors in W. that these exist a unique linear transformation $T: V \to W$ such that $T_{\alpha_i} = \beta_i$ i = 1, 2, ..., n.
- 20. Let 0 be a real number. Prove that the following two matrices are similar over \mathbb{C} ,

$$A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}, B = \begin{pmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{pmatrix}.$$

3

D 32717

- 21. Let T be a linear operator on a finite dimensional vector space V, Prove that the minimal polynomial for T divides its characteristic polynomial. Let T be a linear operator on a vector space $V = W_1 \oplus ... \oplus W_k$. Then prove that there exist projections E_i on V such that
 - (a) $T = c_1 E_1 + ... + c_k E_k$.
 - (b) $I = E_1 + ... + E_k$.
 - (c) $\mathbf{E}_i \mathbf{E}_j = 0, i \neq j$ and
 - (d) The range of \mathbf{E}_i is the characteristic space for T that is associated with c_i . (2 × 5 = 10 weightage)